期刊文献+

基于图像梯度信息强化的SIFT特征匹配算法改进 被引量:18

Improvement of SIFT Feature Matching Algorithm Based on Image Gradient Information Enhancement
下载PDF
导出
摘要 针对传统特征匹配算法匹配率低的问题,提出一种基于图像梯度信息强化的尺度不变特征转换(SIFT)特征匹配算法的改进算法.首先通过适当的梯度算子求出梯度图;然后以特定权值将梯度图与原图融合,归一化后对融合图像进行高斯模糊;最后利用传统算法进行特征提取.实验结果表明,改进算法的视角、旋转不变性明显优于原算法,对亮度变化较大或有噪声的图像匹配率也略有提升,有效提高了SIFT特征匹配算法的准确性. Aiming at the problem of low matching rate of traditional feature matching algorithms, we proposed an improved algorithm based on enhanced image gradient information for scale-invariant feature transform (SIFT) feature matching algorithm. Firstly, a gradient image was obtained by proper gradient operator. Secondly, the gradient image and the original image were fused with the specific weight, and after normalization, the fused image was blurred by Gauss. Finally, the traditional algorithm was used for feature extraction. Experimental results show that the visual angle and invariability of rotation of the improved algorithm are obviously better than those of the original algorithm, and the matching rate of the images with larger brightness or noise is also slightly improved, which effectively improves the accuracy of the SIFT feature matching algorithm.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第1期82-88,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61271315) 国家自然科学基金重大项目(批准号:61631009) 吉林省科技发展计划项目(批准号:20150204006GX)
关键词 尺度不变特征转换 特征匹配 局部特征 梯度 scale-invariant feature transform (SIFT) feature matching local feature gradient
  • 相关文献

参考文献8

二级参考文献88

  • 1章宜林,王敏.结合小波和颜色信息的SIFT图像配准方法[J].华中科技大学学报(自然科学版),2011,39(S2):127-130. 被引量:8
  • 2易文娟,郁梅,蒋刚毅.Contourlet:一种有效的方向多尺度变换分析方法[J].计算机应用研究,2006,23(9):18-22. 被引量:32
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 4庄志国,孙惠军,董继扬,陈忠.基于角点检测的图像匹配算法及其在图像拼接中的应用[J].厦门大学学报(自然科学版),2007,46(4):501-505. 被引量:19
  • 5Lowe D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 6Luo Jun, Ma Y, Takikawa E, Lao S, Kawade M, and Lu Bao-Liang. Person-specific SIFT features for face recognition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, Hawaii, USA, April, 2007, 2(11): 593-596.
  • 7Hu Xue-long, Tang Ying-cheng, and Zhang Zheng-hua. Video object matching based on SIFT algorithmiC]. International Conference on Neural Networks and Signal Processing, Zhenjiang, China, June, 2008: 412-415.
  • 8Yang Zhan-Long and Guo Bao-Long. Image mosaic based on SIFT[C]. Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, August, 2008: 1422-1425.
  • 9Gao Ke, Lin Shou-xun, Zhang Yong-dong, Tang Sheng, and Ren Hua-min. Attention model based SIFT keypoints filtration for image retrieval[C]. 7th IEEE/ACIS International Conference on Computer and Information Science, Portland, Oregon, USA, May, 2008: 191-196.
  • 10Re Y and Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, June, 2004, 2: 506-513.

共引文献64

同被引文献156

引证文献18

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部