期刊文献+

基于部分重编码的流数据发布隐私保护算法 被引量:2

Privacy Preserving Algorithm Based on Partial Re-encode of Streaming Data
下载PDF
导出
摘要 针对流数据具有变化无常、流动极快、潜在无限等特征,相比静态数据隐私保护难度更大的问题,在流数据的基础上提出一种新的数据信息匿名算法,解决了敏感值及其敏感等级随数据转变而转变的难题,能有效地避免匿名流数据遭受链接攻击、相似性攻击以及基于敏感分级的链接攻击威胁.仿真实验结果表明,该流数据匿名模型可有效地保护数据的匿名信息. Aiming at the problem that the streaming data were constantly changing, fast and potentially unlimited features, and it was more difficult to protect than static data privacy. Based on streaming data, we proposed a new data information anonymous algorithm to solve the problem of sensitive value and its sensitivity level changing with data transformation. It could effectively prevent anonymous streaming data from being linked attacks, similarity attacks and threat attack based on sensitive classification. The results of simulation experiment show that the new data anonymous model can effectively protect the anonymous information of the data.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第1期109-113,共5页 Journal of Jilin University:Science Edition
基金 河北省社会科学基金(批准号:62548589)
关键词 流数据 匿名模型 链接攻击 相似性攻击 敏感分级 streaming data anonymous model link attack similarity attack sensitive classification
  • 相关文献

参考文献4

二级参考文献34

  • 1Munro J,Paterson M.Selection and Sorting with Limited Storage [J].Theoretical Computer Science,1980,12:315-323.
  • 2Henzinger M,Raghavan P,Rajagopalan S.Computing on Data Streams [DE/OL].http://gatekeeper.research.compaq.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1998-011,1998-05-08.
  • 3Alon N,Matias Y,Szegedy M.The Space Complexity of Approximating the Frequency Moments [C].In:Miller G,ed.Proc 28th ACM Symp on Theory of Computing.Philadelphia:ACM Press,1996:20-29.
  • 4Guha S,Mishra N,Motwani R,et al.Clustering Data Streams [C].In:Proc 41th IEEE Symposium on Foundations of Computer Science.Redondo Beach:IEEE Computer Society,2000:359-366.
  • 5Ostrovsky R,Rabani Y.Polynomial Time Approximation Schemes for Geometric k-Clustering [C].Proc 41th IEEE Symposium on Foundations of Computer Science.Redondo Beach:IEEE Computer Society,2000:349-358.
  • 6Shmoys D B,Tardos E,Aardal K.Approximation Algorithms for Facility Location Problems [C].In:Jansen K,Khuller S,eds.Approximation Algorithms for Combinatorial Optimization,Third International Workshop,APPROX 2000,Proceedings.Springer:Lecture Notes in Computer Science,2000:27-33.
  • 7Guha S,Meyerson A,Mishra N,et al.Clustering Data Streams:Theory and Practice [J].IEEE Transactions on Knowledge and Data Engineering,2003,15:515-528.
  • 8Charu C A,HAN Jia-wei.A Framework for Clustering Evolving Data Streams [C].Proc the 29th VLDB Conference.Berlin:Johann Christoph Freytag,Morgan Kaufmann,2003:81-92.
  • 9杨晓春,王雅哲,王斌,于戈.数据发布中面向多敏感属性的隐私保护方法[J].计算机学报,2008,31(4):574-587. 被引量:59
  • 10张战成,王士同,钟富礼.具有隐私保护功能的协作式分类机制[J].计算机研究与发展,2011,48(6):1018-1028. 被引量:4

共引文献26

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部