期刊文献+

基于改进烟花算法的SVM特征选择和参数优化 被引量:9

Improved Fireworks Algorithm for Support Vector Machine Feature Selection and Parameters Optimization
下载PDF
导出
摘要 本文提出了一种改进的基于烟花算法的SVM特征选择和参数优化算法.该算法针对特征选择问题的0-1特性,使用二进制编码的烟花算法,采用基于RBF核函数的SVM,在选取尽可能少的特征数目的同时提高了分类准确率.通过UCI数据仿真,对比结果表明:该方法避免了过早成熟而陷入局部最优的问题,可有效地找出合适的特征子集及SVM参数,并取得较好的分类效果. In this paper, we propose a 1,1 ,-- selection and parameters optimization in training SVM. For the 0--1 characteristic of feature selection, the binary coding Fireworks Algorittgn and RBF kernel function based SVM are used to improve the accuracy of classification with less features. Compared to previous works, the proposed method can avoid being mature and falling into a local value, and it can effectively find the appropriate feature subset and parameters to get better performance of classification in UCI dataset.
出处 《微电子学与计算机》 CSCD 北大核心 2018年第1期21-25,共5页 Microelectronics & Computer
基金 "十二五"科技部支撑计划项目(2015BAK24B01)
关键词 二进制编码 烟花算法 特征选择 参数优化 binary encoding fireworks algorithm feature selection parameters optimization
  • 相关文献

参考文献3

二级参考文献24

  • 1张雯,杨春明,罗雪春.改进的粒子群优化算法(英文)[J].微电子学与计算机,2007,24(2):70-72. 被引量:11
  • 2John G H, Kohavi R, Pfleger K. Irrelevant features and the subset selection problem [C]// Proceedings of the Eleventh International Conference on Machine Learning. New Brunswick, N J, USA: Morgan Kauf- mann, 1994: 121-129.
  • 3Kohavi R, John G H. Wrappers for feature subset se- lection [J]. Artificial Intelligence, 2010, 97 (122): 273-324.
  • 4Huang C-L, Wang C-J. A GA-based feature selection and parameters optimization for support vector ma- chines[J]. Expert Systems wit h Applications, 2011, 31 (2): 231-240.
  • 5Shi Y, Eberhart tL A modified particle swarm optimi- zer[C]//IEEE World Conf on Computational Intelli- gence. Piscataway: IEEE,2005: 2675-2679.
  • 6Zhang L P, Yu H J, Hu S X. A new approach to im- prove particle swarm optimization[C] // Lecture Notes in Computer Science. Chicago: Springer Verlag, 2006 : 1036-1043.
  • 7Kennedy J, Eberhart R C. Particle swarm optimization [C] // Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 2010. 1942-1948.
  • 8任小康,郝瑞芝,孙正兴.基于单纯形法的量子粒子群优化算法[J].微电子学与计算机,2009:986-989.
  • 9BALAHUR A, STEINBERGER R, KABADJOV M, et al. Sentiment analysis in the news[ J]. Infrared Physics and Technology, 2014, 65:94-102.
  • 10JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[ C ]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Techno- logies . 2011.

共引文献100

同被引文献75

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部