期刊文献+

基于核函数的在线序列ELM算法的姿态识别 被引量:1

Activity Recognition Based on Online Sequential Kernel Extreme Learning Machine
下载PDF
导出
摘要 姿态识别是许多应用的基础(医学、运动、游戏、安全).传统的识别算法采用批学习的方式去训练网络,但是数据量庞大且数据不会一次性获取,这会导致这类算法花费大量的学习时间且网络权重也不能在线更新.对此利用一种基于核函数的在线序列极限学习机OS-KELM(Online Sequential Kernel Extreme Learning Machine)算法实现人体姿态的分类识别.为降低学习难度和提高学习效率,使用了基于Fisher准则和特征聚类的方法进行特征选择.用手机的三轴加速度计和陀螺仪数据识别人走路、下楼、上楼、站立、坐和躺下的姿态,平均识别精度达到91.89%. Activity recognition (AR) is the basis for many applications concerning health care, sports, security and gaming industry. Traditionally, hatching learning recognition algorithms is adopted to train network. However, the amount of data is considerable and not all training data arrives instantly, the learning procedure is time-consuming and the network weights cannot be updated online. In this paper, Classification of the human activities is performed with Online Sequential Kernel Extreme Learning Machine (OS-KELM). The method of feature selection based on Fisher criterion and feature clustering has been adopted to reduce difficulty and improve efficiency of learning. A tri-axial accelemmeter and gyros data from a user's smart phone are used to recognize walking, waling downstairs, walking upstairs, standing, sitting and laying. Experimental results with an average accuracy of 91.89% are achieved.
出处 《微电子学与计算机》 CSCD 北大核心 2018年第1期91-95,共5页 Microelectronics & Computer
基金 国家重大专项(2015ZX03001013-002)
关键词 在线序列ELM 核函数 人类姿态识别 模式识别Fisher准则 特征聚类 online sequential ELM kernel function human activity recognition pattern recognition Fishercriterion feature clustering
  • 相关文献

参考文献2

二级参考文献19

  • 1林涛,邹黎华,耿勇男.多类型多通道的数据采集系统设计[J].电子测量与仪器学报,2009,23(S1):236-239. 被引量:37
  • 2周鸣争,汪军.基于SVM的多传感器信息融合算法[J].仪器仪表学报,2005,26(4):407-410. 被引量:12
  • 3汪晓东,张长江,张浩然,冯根良,许秀玲.传感器动态建模的最小二乘支持向量机方法[J].仪器仪表学报,2006,27(7):730-733. 被引量:18
  • 4LUO S H, HU Q M . A dynamic motion pattern analysis approach to fall detection[ C ]. IEEE International Workshop on Biomedical Circuits & Systems, 2004:53-56.
  • 5BROMILEY P A, COURTNEY P, THACKER N A. Design of a visual system for detecting natural events by the use of an independent visual estimate: A human fall detector[ C]. Empirical Evaluation Methods in Computer Vision, 2002 : 231-235.
  • 6DOUGHTY K, CAMERON K. Primary and secondary sensing techniques for fall detection in the home [ R ]. Proceedings of Hospital without Walls, City University,London, 1999:104-116.
  • 7BARNES N M, EDWARDS N H, ROSE D A D, et al. Lifestyle monitoring: Technology for supported independence[ J]. IEEE Computing and Control Engineering Journal, 1998,169 (174) :520-526.
  • 8CHEN J, KWONG K, CHANG D, et al. Wearable sensors for reliable fall detection [ C ]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005:1203-1209.
  • 9郑捷文.可穿戴实时诊断、报警、移动健康监护系统[D].中国人民解放军军事医学科学院,2008.
  • 10孙新香.基于三轴加速度传感器的跌倒检测技术的研究与应用[D].上海交通大学,2009.

共引文献74

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部