摘要
在传统的工业过程建模方法的基础上,针对变量间往往存在复杂的数据特性的问题,提出一种线性和非线性关系的判别方法。以多元统计分析为基础,对变量之间的相关性进行分析,有效区分了线性变量和非线性变量。在此基础上提出了相应的建模方法,提高了模型精度。通过仿真验证,对过程进行线性和非线性判别有助于提高过程模型的精度。
Based on the traditional industrial process modeling methods,focusing on the complex data characteristic problem,a linear and nonlinear discriminant analysis algorithm is proposed.This method adopts multivariate statistical analysis to analyze variable correlations,which can effectively distinguish linear variables and nonlinear variables.Based on it,corresponding modeling strategy is proposed.The method is verified by simulation example and conclusion can be drawn that modeling accuracy can be improved.
出处
《青岛大学学报(自然科学版)》
CAS
2017年第4期98-102,共5页
Journal of Qingdao University(Natural Science Edition)
关键词
过程建模
多元统计分析
线性关系
非线性关系
process modeling
multivariate statistical analysis
linear relationship
nonlinear relationship