期刊文献+

数据中心网络中自适应流量分配方案研究 被引量:4

Research on Adaptive Flow Allocation Scheme in Data Center Network
下载PDF
导出
摘要 数据中心网络中的长数据流对网络流量的贡献很大,但是数量较少,因而容易产生网络拥塞,影响网络性能。为改善这一状况,提出一种基于软件定义网络(Software Definition Network,SDN)的多路径自适应流量分配方案。该方案利用SDN控制器的全局特性,计算长数据流的多条可用路径及其权值,并根据链路状态更新路径权值,实现长数据流的动态分配。仿真结果表明,与单路径方案相比,长数据流的吞吐量提升了28%,平均时延降低了16%;与等价多路径方案相比,长数据流的吞吐量提升了7%,平均时延降低了5%。相比于已有方案,该方案在提高网络吞吐量与降低网络时延方面都表现更好。 The long data flow in the network of data center contributes a lot to network capacity, but often leads to network congestion and damages network performance since it is less in quantity. In order to improve such condition, a multi-path adaptive flow allocation scheme based on software defined network is proposed. Depending on the global features of SDN controllers, it calculates multiple potential paths of a long data flow and their weights, and updates path weights with respect to link states for the purpose of dynamic allocation of long data flow. Simulations show that compared with the single path scheme, the throughput of long data stream is increased by 28%, and the average delay is reduced by 16%; compared with the equivalent multipath scheme, the throughput of long data stream is increased by 7% and the average delay is reduced by 5%. The program performs better in terms of network throughput enhancement and network delay decrease than existing programs.
作者 吴杰 徐昌彪
出处 《软件导刊》 2018年第1期179-183,共5页 Software Guide
基金 国家自然科学基金项目(61602073)
关键词 数据中心网络 自适应流量分配 路径全值 动态分配 the network of data center adaptive flow allocation path weights dynamic allocation
  • 相关文献

参考文献3

二级参考文献75

  • 1卢雪林,程望东.高阶统计量在传动系统故障诊断中的应用[J].现代雷达,2008,30(7):84-86. 被引量:1
  • 2Mckeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 2008,38(2):69-74. [doi: 10.1145/1355734. 1355746].
  • 3Elliott C. GENI: Opening up new classes of experiments in global networking. IEEE Internet Computing, 2010,14(1):39-42.
  • 4Gavras A, Karila A, Fdida S, May M, Potts M. Future Internet research and experimentation: The FIRE initiative. ACM SIGCOMM Computer Communication Review, 2007,37(3):89-92. [doi: 10.114511273445.1273460].
  • 5JGN2plus. 2012. http://www.jgn.nict.go.jp/english/index.html.
  • 6SOFIA. 2012. http://fi.ict.ac.cn/research/sofia_overview.htm.
  • 7Yang L, Dantu R, Anderson T, Gopal R. Forwarding and Control Element Separation (ForCES) Framework. RFC 3746, 2004. http://tools.ietf.org/html/rfc3746.
  • 8Greenberg A, Hjalmtysson G, Maltz DA, Myers A, Rexford J, Xie G, Yan H, Zhan J, Zhang H. A clean slate 4D approach to network control and management. ACM SIGCOMM Computer Communication Review, 2005,35(5):41-54. [doi: 10.1145/1096536. 1096541].
  • 9Caesar M, Caldwell D, Feamster N, Rexford J, Shaikh A, Merwe J. Design and implementation of a routing control platform. In: Proc. of the 2rd USENIX Symp. on Networked Systems Design and Implementation (NSDI). Boston: USENIX Association, 2005. 15-28.
  • 10Casado M, Garfinkel T, Akella A, Freedman MJ, Boneh D, Mckeown N, Shenker S. SANE: A protection architecture for enterprise networks. In: Proc. of the 15th Conf. on USENIX Security Symp. Vancouver: USENIX Association, 2006. 137-151.

共引文献438

同被引文献60

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部