期刊文献+

管式甲烷重整储能器的启动性能分析

Analysis of Starting Performance in Tubular Methane Reforming Reactor
原文传递
导出
摘要 本文建立基于碟式太阳能系统的管式甲烷重整储能器的三维非稳态模型,并研究系统的启动性能。在启动阶段,沿反应器径向方向,随时间推移,热量逐渐从反应器受热面向散热面传递;反应器中轴线处催化剂温度在约x=330 mm处达到最大值。主反应的反应速率峰值随反应的进行向前推移,并最终稳定在x=220 mm的位置。反应的显热储效率能早于化学储能开始上升,趋于稳定后系统的化学储能效率远高于显热储能效率。反应器后端由于热流和温度低存在明显的逆反应,随着启动过程逆反应的区域和速度降低,导致整个热化学反应速度提高。 A 3D transient model for a methane carbon dioxide reforming in tubular reactor heated by a solar dish system was built in this paper and the system starting performance was also researched. The numerical results illustrated that the heat transferred from the heating side to the back side along the radial direction of the reactor with the time changes. The position of the maximum catalyst bed temperature along the reactor axis is aboutx = 330 mm. The peak main reaction rate moved forward with the reaction degree and then it stabilized at the position x = 220 ram. The sensible storage efficiency increased before the chemical storage efffciency, but it less than the chemical storage efficiency when the system reached the steady state. As the low temperature and heat flux, there exists reverse reaction in the behind region of the reactor. And the region of the reverse reaction and rate decrease over time, so the thermochemical reaction rate increases.
机构地区 中山大学工学院
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第1期172-178,共7页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目资助(No.51436009 No.51476190) 国家科技支撑计划课题(No.2014BAA01B01) 中央高校基本科研业务费专项资金
关键词 热化学储能 甲烷二氧化碳重整 碟式聚光系统 非稳态模拟 thermochemical energy storage carbon dioxide methane reforming solar dish system
  • 相关文献

参考文献1

二级参考文献26

  • 1Abedin A H, Rosen M A. A critical review of thermochemical ener- gy storage systems [ J ]. The Open Renewable Energy Journal,2011, (4) :42 -46.
  • 2Herrmann U. Survey of thermal energy storage for parabolic trough power plants[ J ]. Journal of Solar Energy Engineering, 2002,124 (2) :145 -152.
  • 3Kanamori M, Matsuad H, Hasatani M. Heat storing/releasing char- acteristics of a chemical heat storage unit of electricity using a Ca(OH)2/CaO reaction [ J ]. Heat Transfer-Japanese Research, 1996,25 (6) :400 - 409.
  • 4Schaube F, WSmer A,Tamme R. High temperature thermochemical heat storage for concentrated solar power using gas-solid reactions [ J ]. Journal of Solar Energy Engineering,2011,133 ( 3 ) : 1 - 7.
  • 5Schmidt M, Szezukowski C, RoBkopf C, et al. Experimental results of a I0 kW high temperature thermochemical storage reactor based on calcium hydroxide [ J ]. Applied Thermal Engineering, 2014,62 (2) :553 -559.
  • 6Darkwa K. Thermochemical energy storage in inorganic oxides : An experimental evaluation [ J 1. Applied Thermal Engineering, 1998, 18(6) :387 -400.
  • 7Ogura H, Yasuda S, Otsubo Y, et al. Continuous operation of a chemicals heat pump [ J ]. Asia-Pacific Journal of Chemical Engi- neering, 2007,22 : 118 - 123.
  • 8Kim S T, Ryu J, Kato Y. Reactivity enhancement of chemical mate- rials used in packed bed reactor of chemical heat pump [ J ]. Pro- gress in Nuclear Energy ,2011,53 (7) : 1027 - 1033.
  • 9Zamengo M, Ryu J, Kato Y. Thermochemical performance of magne- sium hydroxide-expanded graphite pellets for chemical heat pump [ J ]. Applied Thermal Engineering,2014,64 ( 1/2 ) :339 - 347.
  • 10Gokon B, Oku Y, Kaneko H, et al. molten salt using FeO catalyst [ J ] .Methane reforming with CO in Solar Energy, 2002,72 ( 3 ) :243 - 250.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部