期刊文献+

MT烟火药高压稳态燃烧射流场的数值模拟

Numerical Simulation of Steady MT Combustion Jet Flow Field Under High Pressure
原文传递
导出
摘要 为研究镁-特氟隆(MT)基烟火药在不同工况下的燃烧过程,建立了MT烟火药柱二维稳态燃烧流动模型,气相反应采用简化的三步反应动力学机理,利用CFD软件Fluent,数值分析了MT稳定燃烧时的射流形态及流场参数分布特性。结果表明:燃烧流场温度在燃面上方50 mm内处于急剧上升阶段,也是气相反应区域;镁的质量分数为0.45~0.61时,其含量越小,温度越高,且越靠近火焰核心,温度梯度越大;压力为0.1~5 MPa时,随着压力升高,火焰核心向下游移动,动力学反应速率明显增大,CF_2组分分布核心和Mg的氧化还原反应核心向下游移动,而C组分分布核心和C-C结合反应核心由一个中心区逐步分裂移至两侧,形成两个小的核心区。 A two dimensional steady-state CFD combustion model is developed to investigate the combustion progress of Mg-Teflon (MT) pyrolant in different burning situation. A simplified gas-phase chemical kinetic mechanism with 3 reactions has been used to study the shape of jet flow field and parameters distribution characteristics of the steady MT combustion with CFD software Fluent. Results show that the flame temperature increases sharply above the burning surface about 50 mm, where the reactions occur. The less the mass fraction of Mg (0.45~0.61) is, the higher the temperature is. And the closer the place is, the larger the temperature gradient is. The pressure changes from 0.1 MPa to 5 MPa, which results in the flame center moving towards downstream and obviously increasing kinetic rate of reaction. Both of the CF2 distribution center and the oxidation- reduction reaction center of Mg move towards downstream. The distribution center of carbon and C-C recombination reaction center are split to double smaller centers on both sides of the reaction zone.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第1期224-231,共8页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51176076)
关键词 MT 烟火药 燃烧射流场 数值模拟 MT pyrolant combustion jet flow field numerical simulation
  • 相关文献

参考文献2

二级参考文献14

  • 1杨浩林,赵黛青,杨卫斌.扩散燃烧流场的PIV测试方法探讨[J].工程热物理学报,2007,28(z2):233-236. 被引量:8
  • 2周见广,臧述升,翁史烈,葛冰.扩散燃烧流场测量的PIV应用研究[J].燃烧科学与技术,2005,11(1):92-95. 被引量:19
  • 3Marc J. Schniederjans, Michelle L. Pantoya, James J. Hoffxnan and Darrin L. Willauer. A multi-objective modeling approach for energetic material evaluation decisions[J]. European Journal of Operational Research, 2009, 194 (3) :629-636.
  • 4H. Muthurajan, R. Sivabalan, N. Pon Saravanan and M.B. Talawar. Computer code to predict the heat of explosion of high energy materials[J]. Journal of Hazardous Materials, 2009, 161( 2-3): 714-717.
  • 5A. Veeraragavan and C. Cadou. Experimental investigation of influence of heat recirculation on temperature distributionand burning velocity in a simulated micro-burner[R]. AIAA 2007-577,2007.
  • 6Takeo Shimizu. Study on the reaction mechanism of black powder and its application ballistics of firework shells [J]. Journal of Pyrotechnics Archive, 2007(2): 45-58.
  • 7A Kodal , K A Watson, et al. Turbulence filter and pod analysis for velocity fields in lifted CH4-Air diffusion flames [J]. Flow, Turbulence and Combustion,2003, 70( 1-4):21-41.
  • 8Papadopoulos George, Bryant Rodney A, Pitts Willian M. Particle image velocimetry in flickering methane/ air diffusion flames[C]//2nd Joint Meeting of the United States Sections of the Combustion Institute. Oakland, California: Lawrence Berkeley National Laboratory, 2001.
  • 9Widmann J F, Presser C, Papadopoulos G. Benchmark database for input and validation o f spray combustion models: Inlet air characterization[R]. IAA 2001-1116.
  • 10薛锐,吴伟,李燕,许厚谦,朱晨光.高温燃烧质点间微尺度传热研究[C]//中国工程热物理学会燃烧学学术会议.杭州:中国工程热物理学会,2011.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部