期刊文献+

一种基于Newman快速算法改进的社团划分算法 被引量:5

A Community Partitioning Algorithm Based on Improved Fast-Newman Algorithm
下载PDF
导出
摘要 社团划分目前是从海量科技文献中进行知识组织和发现的一种重要方法,其中Newman快速算法是目前效率较高的一种社团划分算法,然而由于Newman快速算法是一种基于局部搜索算法,算法的结果集往往是局部最优而不是全局最优,导致科技文献关系网络中的社团划分结果往往不是最优的社团结构。根据网络图中社团结构拓扑关系的特点,提出了社团贡献度的概念,并给出了计算公式;同时,为了克服Newman快速算法在社团合并迭代过程中获取到局部最优解而终止迭代的缺点,提出一种直接以社团贡献度为社团合并条件的CCN算法。最后在MATLAB环境中,用实际网络数据进行对比实验验证,结果表明,改进的CCN算法在社团划分效率和Q值结果上有更理想的效果。 The community partitioning is an important way of organizing and achieving knowledge from the massive scientific literature now. The Newman fast-algorithm is efficient in community partitioning,but its result sets is usually local optimal instead of global optimal due to basis of the local search theory, which make the result of community partitioning in science and technology literature relation network not the best. In this paper,we propose the concept of community contribution degree according to the characteristics of topological structure of com- munity structure in network graph and give its formula. In the meantime, we present a new CCN taking community contribution degree as community integration condition in order to overcome the shortcomings of the Newman Fast-Algorithm that is terminating iteration of com- munity partitioning when getting locally optimal solution of whole network graph. Finally, the experiment of comparison on actual network data in MATLAB shows that the CCN has better effects in community partitioning efficiency and Q value.
作者 付常雷
出处 《计算机技术与发展》 2018年第1期33-35,40,共4页 Computer Technology and Development
基金 中央高校基本科研业务费专项资金(YX2013-29) 北京高等学校"青年英才计划"(YETP0767)
关键词 社团划分 Newman快速算法 Q值 贡献度 community partitioning fast-Newman algorithm Q value community contribution degree
  • 相关文献

参考文献6

二级参考文献106

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2文俊浩,吴中福,吴红艳.空间孤立点检测[J].计算机科学,2006,33(5):186-187. 被引量:5
  • 3王林,张婧婧.复杂网络的中心化[J].复杂系统与复杂性科学,2006,3(1):13-20. 被引量:61
  • 4徐前方,肖波,郭军.一种基于相关度统计的告警关联规则挖掘算法[J].北京邮电大学学报,2007,30(1):66-70. 被引量:15
  • 5董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 6Zhang Min, Zhong Guo - along, Aw Aiti. Exploring syntactic struetured feature over parse trees for relation extraetion using kernel methods [J]. Information Processing and Management, 2008,44:687-701.
  • 7Culotta A, Sorensen J. Dependency tree kernels for relation extraction[C] // Proceedings of the 42nd Annual Meetings of the Association for Computational Linguistics (ACL-04). Barcelona, Spain July, 2004 : 423-429.
  • 8BUnescu R C, Mooney R J. A Shortest Path Dependency Kernel for Relation Extraction[C]//Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. 2005 : 724-731.
  • 9Huang Rui - hong, Sun Le, Feng Yuan- yong. Study of kernel - based Methods for Chinese Relation Extraetion[C]//the LNCS, Springer, AIRS' s 08. 2008: 698-604.
  • 10Che Wang-xiang, Jiang Jian-rnin, Su Zhong, et al. Improved-editdistance Kernel for Chinese Relation Extraction[C]//Proc. of the Second International Joint Conference on Natural Language Processing (IJCNLP-05). 2005.. 132-137.

共引文献103

同被引文献33

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部