摘要
本文研究了周期调制噪声和非对称双态噪声联合驱动下的具有频率涨落的谐振子的随机共振.本文的主要工作是通过Shapiro-Logniov公式求解谐振子系统的稳态响应一阶矩的解析表达式,并且推导谐振子系统的稳态响应一阶矩的稳定性条件,进而发现了系统关于不同参数的广义随机共振现象,如双峰共振现象等丰富的动力学行为.
In this paper, we focus on the stochastic resonance behaviors of a Langevin oscillator with fluctuating frequency induced by both periodically modulated noise and asymmetric noise. By using the Shapiro-Loginov formula, analytical expression of the first moment of the stable response is calculated. Then, stable conditions of the first moment are obtained and the stochastic resonance behaviors of the oscillator are elucidated.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第1期1-6,共6页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11301361)