期刊文献+

关系亲密程度的LTE异构网络切换算法 被引量:4

Relational intimacy degree handover algorithm of LTE heterogeneous network
下载PDF
导出
摘要 处于宏蜂窝和毫微微蜂窝覆盖范围内的用户设备为满足用户体验质量,需进行大量的切换操作,随着总切换次数的增加,用户设备将持续占用部分物理资源,导致系统吞吐量降低.提出一种关系亲密程度的长期演进(LTE)异构网络切换算法,通过统计用户设备接入毫微微蜂窝的历史信息来估计用户设备与毫微微蜂窝的关系亲密程度,利用该属性对等待切换的用户设备进行优先级排序,结合用户设备的接收信号强度、移动速度、毫微微蜂窝可用带宽进行综合切换判决.数值结果表明提出的切换算法大幅降低总切换次数,显著减少不必要切换次数,有效提高系统吞吐量. To meet the need for Quality of Experience(QoE), the User Equipment(UE) has to handover frequently in the coverage area between Macro cell and Femto cell, with the increase of total handover times, the UE will occupy some physical resources continuously, resulting in lower system throughput. Relational intimacy degree handover algorithm of Long Term Evolution(LTE) heterogeneous network is proposed, which estimates the relational intimacy between UE and Femto cell by gathering the historical information of the former access to the latter, then sorts the priority ordering for UE waited for han- dover by using this attribute, and makes the handover decision by taking the receiving signal strength, speed and Femto cell bandwidth available into account. Simulation results show that the proposed algo- rithm can reduce the total handover times obviously, avoid the unnecessary handover times and improve the system throughput effectively.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期73-80,共8页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61371097,61271261) 重庆市青年科技人才培养计划(CSTC2014KJRC-QNRC40001) 重庆高校创新团队建设计划资助项目(CXTDX201601020)
关键词 无线通信技术 切换算法 关系亲密程度 异构网络 长期演进 Wireless communication technology Handover algorithm Relational intimacy degree Het-erogeneous network Long Term Evolution
  • 相关文献

参考文献2

二级参考文献28

  • 1寇明延, 赵然. 现代航空通信技术[M].北京: 国防工业出版社, 2011.
  • 2Haque J, Ertiark MC, Arslan H. Aeronautical ICI analysis and Doppler estimation[J]. IEEE Commun Lett, 2011, 15(9): 906.
  • 3Meng Q, Lu M, Sun B, et al. System performance analysis of low-altitude relay networks[C]// Pro- ceedings of IEEE International Conference on Intel- ligent Control and Information Processing (ICICIP). Beijing, China: IEEE, 2013.
  • 4Haas E. Aeronautical channel modeling[J]. IEEE Trans Vehicular Tech, 2002, 51(2): 254.
  • 5Meng Y S, Lee Y H. Measurements and character- izations of air-to-ground channel over sea surface at C-band with low airborne altitudes[J]. IEEE Trans Vehicular Tech, 2011, 60(4): 1943.
  • 6Daniel K, Putzke M, Dusza B, et al. Three dimen- sional channel characterization for low altitude aerial vehicles [C]// Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS). York, UK, 2010.
  • 7CHEN Q, YANG X, NI J, et al. A large frequency offset correction scheme for wideband low-altitude communication system[J]. J Comput Inform Syst, 2012, 8(24): 10439.
  • 8Alzaroug A B, A1-Fuhaidy B A, Salah M M, etal. Performance analysis of the downlink CP-WCDMA system with turbo code in frequency domain I J]. Wireless Pets Commun, 2014, 77(4): 3193.
  • 9Sundaresan K, Rangarajan S. On exploiting diversi- ty and spatial reuse in relay-enabled wireIess net- works[C]. Hong Kong SAR, China.. ACM, 2008.
  • 10Haas Z J, Halpern J Y, Li L. Gossip-based ad hoe routing[J]. IEEE/ACM Trans Network, 2006, 14 (3) .. 479.

共引文献3

同被引文献24

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部