期刊文献+

非均匀覆盖层谐振腔天线设计 被引量:1

Non-uniform superstrate resonant cavity antenna design
下载PDF
导出
摘要 提出了一种非均匀覆盖层谐振腔天线设计方法.通过构造反射系数幅值随天线口径面位置变化的函数来实现谐振腔天线覆盖层的非均匀化.使用金属化过孔作为周期结构覆盖层的谐振单元,分别设计出满足反射系数变化的变谐振单元长度和变过孔直径的两种非均匀覆盖层谐振腔天线.它们的阻抗特性、方向图和增益,同具有等反射系数变化规律的非均匀介质覆盖层谐振腔天线一致.结果表明,覆盖层的反射系数变化规律是非均匀覆盖层谐振腔天线的决定因数.设计出的两种非均匀覆盖层谐振腔天线实测|S_(11)|< -10dB阻抗带宽均大于8%,增益均大于18dBi,同时在阻抗带宽内增益相比峰值增益下降均小于1.5dB. A novel non-uniform superstrate resonant cavity antenna (RCA) design method was proposed. The non-uniform superstrate was constructed by changing the reflection coefficient at different location of the aper- ture. The values of the reflection coefficients were determined by a given function. Metallic via was chosen as the unit of superstrate, whose reflection coefficient can be determined by changing via diameters or by changing unit length between vias. According these two ways, two kinds of non-uniform superstrate RCAs were de- signed, both followed the same reflection coefficient function. The performances of two kinds of antennas were very similar, and both satisfy the results forecasted by the reflection coefficient function. The results indicated that reflection coefficient characteristic was the important impact factor for non-uniform superstrate RCA. Two prototype antennas were fabricated and measured. The measured |S11|〈-10 dB impedance bandwidth and gain of the two antennas were both greater than 8% and 18 dBi, respectively. The gain only dropped within 1.5 dB from the peak gain in the impedance bandwidth.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期99-104,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金委员会与中国工程物理研究院联合基金-NSAF基金[U1230112]
关键词 谐振腔天线 非均匀 覆盖层 天线设计 Resonant cavity antenna Non-uniform Superstrate Antenna design
  • 相关文献

参考文献1

二级参考文献40

  • 1吴爱婷,官伯然.添加覆盖层的宽带微带贴片天线[J].杭州电子工业学院学报,2004,24(6):4-7. 被引量:1
  • 2葛志晨,章文勋,刘震国,顾莹莹.采用介质PBG盖板Fabry-Perot谐振器的宽频带高增益印刷天线[J].电波科学学报,2006,21(5):647-651. 被引量:3
  • 3Trentini G V. Partially reflecting sheet array[J]. IRE Trans. Antennas Propagat. , 1956(4) :666 - 671.
  • 4Feresidis A P, Vardaxoglou J C. High-gain planar antenna using optimized partially reflective surfaces [ J ]. IEE Proc Microwave Antennas Propagat, 2001,148 (6) : 345 - 350.
  • 5Boutayeb H, Mahdjoubi K, Tarot A C, et al. Directivity of an antenna embedded inside a fabry-perot cavity analysis and design[J]. Microw & Opt. Tech. Lett. , 2006,48(1) :12 -17.
  • 6Thevenot M, Cheype C, Reineix A, et al. Directive photonicbandgap antennas [ J ]. IEEE Trans. Antennas Propagat. , 1999,47( 11 ) :2115 -2122.
  • 7Cheype C, Serier C, Thevenot M, et al. An electromagnetic bandgap resonator antenna[ J]. IEEE Trans. Antennas Propagat., 2002,50(9) : 1285 - 1290.
  • 8Lee Y J, Yeo J, Mettra R , et al. Design of a high-directivity electromagnetic band gap resonator antenna using a frequency- selective surface superstrate [ J ]. Microw. and Opt. Tech. Letters, 2004,43(6) : 462 -467.
  • 9Weily A R, Horvath L, Esselle K P, et al. A planar resonator antenna based on a woodpile EBG material [ J ]. IEEE Trans. Antermas Propagat, 2005,53 : 216 -223.
  • 10Lee Y J, Yeo J, Mettra R, et al. Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters [ J ]. IEEE Trans. Antennas Propagat, 2005,53( 1 ) :224 -235.

共引文献4

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部