期刊文献+

Android隐式信息流检测的本体模型 被引量:4

Ontology model for detecting Android implicit information flow
下载PDF
导出
摘要 针对传统的信息泄漏检测技术无法有效检测Android应用中存在的隐式信息泄露的问题,提出了一种将控制结构本体模型与语义网规则语言(SWRL)推理规则相结合的Android隐式信息流(IIF)推理方法。首先,对控制结构中能够产生隐式信息流的关键要素进行分析和建模,建立控制结构本体模型;其次,通过分析隐式信息泄露的主要原因,给出基于严格控制依赖(SCD)隐式信息流的判定规则并将其转换为SWRL推理规则;最后,将添加的控制结构本体实例与推理规则共同导入到推理引擎Jess中进行推理。实验结果表明:所提方法能够推理出多种不同性质的SCD隐式流,公开样本集的测试准确率达到83.3%,且推理耗时在分支数有限时处于合理区间。所提模型方法可有效辅助传统信息泄露检测提升其准确率。 Concerning the problem that the traditional information leakage detection technology can not effectively detect implicit information leakage in Android applications, a reasoning method of Android Implicit Information Flow (IIF) combining control structure ontology model and Semantic Web Rule Language (SWRL) inference rule was proposed. Firstly, the key elements that generate implicit information flow in control structure were analyzed and modeled to establish the control structure ontology model. Secondly, based on the analysis of the main reasons of implicit information leakage, criterion rules of implicit information flow based on Strict Control Dependence (SCD) were given and converted into SWRL inference rules. Finally, control structure ontology instances and SWRL inference rules were imported into the inference engine Jess for reasoning. The experimental results show that the proposed method can deduce a variety of implicit information flow based on SCD with different nature and the testing accuracy of sample set is 83.3%, and the reasoning time is in the reasonable interval when the branch number is limited. The proposed model can effectively assist traditional information leakage detection to improve its accuracy.
出处 《计算机应用》 CSCD 北大核心 2018年第1期61-66,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61370065 61502040) "十二五"国家科技支撑计划项目子课题项目(2015BAK12B03-03) 网络文化与传播重点实验室开放课题项目(ICDDXN001)~~
关键词 Android隐式信息流 控制结构 严格控制依赖 本体 语义网规则语言 Android implicit information flow control structure Strict Control Dependence (SCD) ontology SemanticWeb Rule Language (SWRL)
  • 相关文献

参考文献4

二级参考文献26

  • 1杜波,田怀凤,王立,陆汝占.基于多策略的专业领域术语抽取器的设计[J].计算机工程,2005,31(14):159-160. 被引量:26
  • 2郑家恒,卢娇丽.关键词抽取方法的研究[J].计算机工程,2005,31(18):194-196. 被引量:41
  • 3杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 4Cranor L, Langheinrich M, Marchiori M, et al. The platform for privacy preferences 1.0 (P3P1.0) speeification[S/OL]. W3C Candidate Recommendation, HTML Version. (2000-12) [2012-11]. http://www.w3.org/TR/P3P/.
  • 5Sandhu R S, Coyne E J. Role-based access control models[J]. IEEE Computer, 1996, 29(2): 38-47.
  • 6Zhang Chunjie. Research on privacy ontology inference based on rules[D]. Kunming: Yunnan University, 2011.
  • 7Huang Feng. A description logic-based approach for access control policy conflict detection[D]. Nanjing: Nanjing Uni- versity of Aeronautics and Astronautics, 2010.
  • 8Liu Linyuan, Li Qing, Zhu Yi, et al. Specification and veri- fication of privacy requirements in Web service composi- tions[J]. Journal of PLA University of Science and Technol- ogy: Natural Science Edition, 2012, 13(1): 27-33.
  • 9Horrocks I, Patel-Sclmeider P F, Boley H, et al. SWRL: a semantic Web rule language combining OWL and RuleML [S/OL]. W3C Note. (2004-05-12)[2012-11]. http://www.w3. org/Submission/SWRL.
  • 10Knublauch H, Fergerson R W, Noy N F, et al. The Protege OWL plugin: an open development environment for seman- tic Web applications[C]//LNCS 3298: Proceedings of the 3rd Intemational Semantic Web Conference (ISWC 2004), Hiroshima, Japan, 2004. Berlin, Heidelberg: Springer-Verlag, 2004: 229-243.

共引文献267

同被引文献49

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部