期刊文献+

利用可分性指数的极化SAR图像特征选择与多层SVM分类 被引量:6

Polarimetric SAR image feature selection and multi-layer SVM classification using divisibility index
下载PDF
导出
摘要 可分性指数(SI)可用来选择各类地物的有效分类特征,但在多维特征以及地物可分性较好的情况下,只利用可分性指数进行特征选择不能有效去除特征之间的冗余性。基于此,提出了利用可分性指数并辅以顺序后退(SBS)算法进行特征选择与多层支持向量机(SVM)分类的方法。首先,由各类地物在所有特征下的可分性指数选择分类地物和特征;然后,以该地物的分类精度为评估依据,利用顺序后退法筛选特征;其次,由剩余地物之间的可分性指数和顺序后退法依次选择各类地物的分类特征;最后利用多层SVM进行分类。实验结果表明,与只利用可分性指数选择特征进行多层SVM分类的方法相比,所提方法的分类精度提高了2%,各类地物的分类精度均高于86%,且运行时间为原来方法的一半。 Separability Index (SI) can be used to select effective classification features, but in the case of multi- dimensional features and good separability of geology, the use of separability index for feature selection can not effectively remove redundancy. Based on this, a method of feature selection and multi-layer Support Vector Machine (SVM) classification was proposed by using separability index and Sequential Backward Selection (SBS) algorithm. Firstly, the classification object and features were determined according to the Sis of all the ground objects under all the features, and then based on the classification accuracies of the objects, the SBS algorithm was used to select the features again. Secondly, the features of next ground objects were determined by the separability index of remaining objects and the SBS algorithm in turn. Finally, the multi-layer SVM was used for classification. The experimental results show that the classification accuracy of the proposed method is improved by 2% compared with the method of multi-layer SVM classification where features are selected only based on the SI, and the classification accuracy of all kinds of objects is higher than 86%, and the running time is half of the original method.
出处 《计算机应用》 CSCD 北大核心 2018年第1期132-136,170,共6页 journal of Computer Applications
基金 高分辨率观测系统重大专项技术研究与开发项目(03-Y20A10-9001-15/16) 综合减灾空间信息服务应用示范项目~~
关键词 合成孔径雷达 特征选择 可分性指数 顺序后退法 多层支持向量机分类 Synthetic Aperture Radar (SAR) feature selection Separability Index (SI) Sequential BackwardSelection (SBS) method multi-layer Support Vector Machine (SVM) classification
  • 相关文献

参考文献7

二级参考文献88

  • 1王强,孙洪.基于支持向量机的多极化SAR图像监督分类[J].信号处理,2005,21(z1):531-534. 被引量:5
  • 2何志文,李夕海,刘代志,张斌.基于相关性分析的特征选择方法研究[J].核电子学与探测技术,2005,25(6):729-732. 被引量:11
  • 3毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 4吴永辉,计科峰,郁文贤.基于支持向量机的极化SAR图像分类[J].现代雷达,2007,29(6):57-60. 被引量:7
  • 5Vapnik V 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6Vapnik V N 著.许建华,张学工译.统计学习理论.北京:电子工业出版社,2004.
  • 7Van Zyl J J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. on Geoscience and remote sensing, 1989,27 ( 1 ) :36-45.
  • 8Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. on Geoscience and Remote Sensing, 1997,35 (1): 68 -78.
  • 9Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data. IEEE Trans. on Geoscience and remote sensing, 1998,36(3) :963-973.
  • 10Lee J-S, Grunes M R, Ainsworth T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. on Geoscience and Remote Sensing, 1999,37 (5) :2249-2258.

共引文献37

同被引文献48

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部