期刊文献+

一种多尺度可变形部件模型的人脸表情识别 被引量:1

Facial Expression Recognition Based on Multi-scale Deformable Part Model
下载PDF
导出
摘要 针对现有表情识别研究无法精确捕捉脸部关键部位特征,提出一种多尺度可变形部件模型(DPM)的人脸表情识别方法。首先构建多尺度图像的特征金字塔,然后用随机梯度下降算法训练人脸DPM模型,根据DPM模型中根滤波器与部件滤波器的响应值确定人脸关键部位位置,最后提取关键部位的HOG特征,将获得的特征输入到分类器中训练。在CK+和JAFFE表情库上的验证结果表明,该方法在不同角度和光照强弱影响下对人脸均有较好的检测和定位效果,提取的人脸关键部位特征在计算速率和识别率上优于对比算法。 In view of the problem that the existed research on facial expression recognition could not capture the features of key facial parts,a facial expression recognition approach based on multi-scale deformable part model( DPM) was proposed. Firstly,a feature pyramid of multi-scale image was built. And then,by means of random gradient descent methods the multi-scaled facial deformable part model was obtained. According to the response value of root filter and parts filter on the feature pyramid the face and its key parts were detected. In final,the HOG features on the key facial parts were extracted. Input it into classifier to train a model. The experimental results of CK + and JAFFE expression databases show that under various face angles and illumination conditions,the proposed approach maintains the better effect in aspects of face detection and its key parts positioning,and furthermore,the computing speed and recognition rate of facial expression is superior to other comparison algorithms.
出处 《科学技术与工程》 北大核心 2017年第35期256-261,共6页 Science Technology and Engineering
基金 山西省自然科学基金(2103011017-6)资助
关键词 多尺度 可变形部件模型 随机梯度下降 特征提取 multi-scale deformable part model random gradient descent feature extract
  • 相关文献

参考文献5

二级参考文献80

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2田广,戚飞虎,朱文佳,毛欣,陈磐君.单目移动拍摄下基于人体部位的行人检测[J].系统仿真学报,2006,18(10):2906-2910. 被引量:10
  • 3刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 4Guo L, Wang R BJin L S,et al. Algorithm study for pedestrian detection based on monocular vision [C]. Shanghai, China:Proceedingsof IEEE International Conference on Vehicular Electronics and Safety, 2006:83-87.
  • 5Xi H, Xiao Z, Zhang F. Study on Pedestrian Detection Method Based on HOG Features and SVM[J]. Advanced Material Research,2011,268-270: 1786-1791.
  • 6Ren H, Heng C, Zheng W, et al.Fast object detection using boosted co-occurrence histogram of oriented gradients[C]// Hong Kong,China:Proceedings of IEEE International Conference on Image Processing, ICIP,2010:2705-2708.
  • 7Dalai N, Triggs B. Histograms of Oriented Gradients for Human Detection [C]. Proc. IEEE Conference on Computer Vision and Pat-tern Recognition, San Diego, USA, 2005,1(2): 886-893.
  • 8Yang S, Bhanu B. Facial expression recognition using emotion avatar image[C]// Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Work?shops. Santa Barbara: IEEE Computer Society Press,2011: 866- 87l.
  • 9Valstar M F, Mehu M,Jiang B H,et al. Meta-Analysis of the first facial expression recognition challenge[J]. IEEE Transac?tion on Systems, Man and Cybernetics, Part B: Cybernetics. 2012, 42( 4) : 966-979.
  • 10Gehrig T, Ekenel H K. Facial action unit detection using kernel partial least squares[C]// Proceedings of the 20 II IEEE Interna?tional Conference on Computer Vision Workshops. Barcelona: IEEE Computer Society Press ,2011 : 2092-2099.

共引文献49

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部