摘要
利用Adomian修正分解法把热传导微分方程转换成适用符号计算的递归代数公式,并结合初始条件得到了方程的解析解表达式.数值计算结果显示:Adomian修正分解法具有很好的收敛性,所得结果与精确解误差较小;算例表明此法能快速有效求解瞬态热传导方程.
The Adomian modified decomposition method(AMDM)is employed in this paper to solve the heat conduction equations.Based on AMDM the heat differential equation becomes a recursive algebraic equation which is suitable for symbolic computation.By using initial condition,the closedform series solution can be easily obtained.The numerical calculation results demonstrate that AMDM is quite accurate and readily implemented.Furthermore,the excellent convergence of the solution based on AMDM is also found.Numerical results indicate that AMDM is quite efficient and practical for solving the transient heat conduction equations.
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2017年第4期39-41,62,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然基金资助项目(11464031
51265037)
航空科学基金资助项目(2015ZA56002)
江苏省六大高峰人才资助项目(2017-KTHY-036)
关键词
瞬态热传导方程
Adomian修正分解法
精确解
收敛性
transient heat conduction equations
Adomian modified decomposition method
exact solutions
convergence