期刊文献+

基于Adomian修正分解法求解瞬态热传导方程

An approach for solving the transient heat conduction equations based on Adomian modified decomposition
原文传递
导出
摘要 利用Adomian修正分解法把热传导微分方程转换成适用符号计算的递归代数公式,并结合初始条件得到了方程的解析解表达式.数值计算结果显示:Adomian修正分解法具有很好的收敛性,所得结果与精确解误差较小;算例表明此法能快速有效求解瞬态热传导方程. The Adomian modified decomposition method(AMDM)is employed in this paper to solve the heat conduction equations.Based on AMDM the heat differential equation becomes a recursive algebraic equation which is suitable for symbolic computation.By using initial condition,the closedform series solution can be easily obtained.The numerical calculation results demonstrate that AMDM is quite accurate and readily implemented.Furthermore,the excellent convergence of the solution based on AMDM is also found.Numerical results indicate that AMDM is quite efficient and practical for solving the transient heat conduction equations.
作者 沈辉 毛崎波
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2017年第4期39-41,62,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然基金资助项目(11464031 51265037) 航空科学基金资助项目(2015ZA56002) 江苏省六大高峰人才资助项目(2017-KTHY-036)
关键词 瞬态热传导方程 Adomian修正分解法 精确解 收敛性 transient heat conduction equations Adomian modified decomposition method exact solutions convergence
  • 相关文献

参考文献2

二级参考文献20

  • 1袁益让.在多孔介质中完全可压缩、可混溶驱动问题的差分方法[J].计算数学,1993,15(1):16-28. 被引量:30
  • 2袁益让.FINITE DIFFERENCE FRACTIONAL STEP METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE[J].Acta Mathematica Scientia,2005,25(3):427-438. 被引量:4
  • 3CRANK J. Free and moving boundary problems [M]. Oxford: Clarendon Press, 198,1: 1-23.
  • 4OCKENDON J R, HODGKINS W R. Moving boundary problems in heat flow anti diffusion [M]. Oxford: Clarendon Press, 1975: 1-20.
  • 5FRIEDMAN A, HU B. Asymptotic stability for a free boundary problem arising in a tumor model [J]. J Differ Eels, 2006, 227(2): 598-639.
  • 6TAO You-shan, CHEN Miao-jun. An elliptic-hyperbolic free boundary problem modelling cancer therapy [J].Nonlinearity, 2006, 19(2): 419-410.
  • 7AMADORI A L, VAZQUEZ J L. Singular free boundary prohlem from image processing[J]. Math Models Methods Appl Sci, 2005, 15(5): 689-715.
  • 8LIN Zhi-gui. A free boundary problem for a predator-prey model [J].Nonlinearity, 2007, 20(8): 1883-1892.
  • 9AZIZ A, NA T Y. Perturbation methods in heat transfer [M]. Washington: Hemisphere, 198,1: 21-49.
  • 10SPALL R.Spectral collocation methods for one dimensional phase change problems[J].Hear Mass Transfer. 38(15): 2713-2718.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部