期刊文献+

基于极大似然估计的全景立体视觉机器人自定位方法 被引量:2

Self-localization of a robot with omnidirectional stereoscopic vision based on maximum likelihood estimation algorithm
下载PDF
导出
摘要 针对室内环境下移动机器人的自主定位问题,研究了一种基于极大似然估计算法的全景立体视觉机器人自主定位方法。通过分析双曲面折反射式全景成像系统原理,利用全景视觉具有探测范围广、能够获取环境信息丰富的特点,提出了一种同向垂直基线的全景立体深度信息测量算法。在三边定位算法的基础上推广,提出了基于多路标的极大似然定位算法,采用最小二乘估计法,计算机器人定位的几何超定方程组,设计了完备的定位算法,实现机器人的绝对坐标解算。该方法能够应用于大范围环境的全局定位,实验结果验证了该算法的可靠性和准确性。 In order to solve the self-localization of mobile robot in indoor environment,a self-localization method based on the maximum likelihood estimation localization algorithm and used for omnidirectional stereo vision robot was proposed. By analyzing the imaging principle of hyperbolic catadioptric omnidirectional vision system,a method of measuring the panoramic three-dimensional depth information adopting vertical baseline with the same direction was proposed. The omnidirectional vision has the characteristics of wide detection range and rich environmental information. On the basis of the trilateration localization algorithm,a maximum likelihood localization algorithm based on multiple landmarks was proposed,the least squares estimation method was used to calculate the geometric overdetermined equations and a complete positioning algorithm was designed to realize the absolute coordinates solution on the robot. The method can be applied to global localization in a wide range of environments,and experimental results verified the reliability and accuracy of the proposed algorithm.
出处 《应用科技》 CAS 2017年第5期40-45,51,共7页 Applied Science and Technology
基金 国家自然科学基金项目(61175089 61203255) 国家级大学生创新计划项目(GK2050002063513)
关键词 全景立体视觉 移动机器人 极大似然估计 自定位 视觉测量 特征匹配 人工路标 三边定位 omnidirectional stereoscopic vision mobile robot maximum likelihood estimation self-localization vision measurement feature matching artificial landmark trilateration localization
  • 相关文献

参考文献4

二级参考文献68

  • 1Almazan C B, Youssef M, Aqrawala A K. Rover: An integration and fusion platform to enhance situational awareness[C]//IEEE International Performance, Computing, and Communications Conference. Piscataway, NJ, USA: IEEE, 2007: 582-587.
  • 2Moravec H E Robot spatial perception by stereoscopic vision and 3D evidence grids, CMU-RI-TR-96-34[R]. USA: Robotics Institute, Carnegie Mellon University, 1996.
  • 3Wurm K M, Hornung A, Bennewitz M, et al. OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems[C]//Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Ma- nipulation. Piscataway, NJ, USA: IEEE, 2010.
  • 4Ryde J, Hu H S. 3D mapping with multi-resolution occupied voxel lists[J]. Autonomous Robots, 2010, 28(2): 169-185.
  • 5Howard A, Wolf D F, Sukhatme G S. Towards 3D mapping in large urban environments[C]//IEEE/RSJ International Confer- ence on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2004: 419-424.
  • 6Cole D M, Newman P M. Using laser range data for 3D SLAM in outdoor environments[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 1556-1563.
  • 7Nuchter A, Lingemann K, Hertzberg J, et al. 6D SLAM - 3D mapping outdoor environments[J]. Journal of Field Robotics, 2007, 24(8/9): 699-722.
  • 8Ye C, Borenstein J. A novel filter for terrain mapping with laser rangefinders[J]. IEEE Transactions on Robotics, 2004, 20(5): 913-921.
  • 9Plagemann C, Mischke S, Prentice S, et al. A Bayesian regres- sion approach to terrain mapping and an application to legged robot locomotion[J]. Journal of Field Robotics, 2009, 26(10): 789-811.
  • 10Dryanovski I, Morris W, Xiao J. Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2010: 1553- 1559.

共引文献67

同被引文献10

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部