摘要
煤矿剪式抓斗的挖掘过程是一个复杂的非线性动力学问题,由于动态平衡方程的不确定性使得该类问题的优化设计不易实现.建立了抓斗挖掘过程的数学模型,获得了不同设计参数下的挖掘性能数据样本点,然后构造了三因素五水平正交试验;构建了物料挖掘过程目标函数的二次多项式响应面模型,并采用最小二乘法求解响应面模型中的待定系数向量.利用多目标优化的理想点法对抓斗的几何参数进行优化,获得了一种性能更优的产品.与蒙特卡罗法的计算结果对比表明,该方法具有良好的预测能力,并大大减少了仿真计算的规模.
The mining process of granular materials is a complex nonlinear dynamic problem,thus the optimization of bucket grab problem is difficult to achieve due to the uncertainty of dynamic equilibrium equation. This paper takes the coal mine scissor bucket grab as an example. Firstly,we establish the mathematical model of grab to obtain the mining performance data samples in different design parameters. Then,we construct three-factor and five-level orthogonal test to establish the quadratic polynomial response surface model of the optimization function of granular material mining performance, and solve the undetermined coefficient vectors of response surface model by the least square method. Finally,we obtain a better performance product by optimizing geometric parameters of the grab based on the ideal point method of multi-objective optimization. The results showthat the proposed method has good predictive ability,and greatly reduces the scale of simulation calculation by comparing with the results of Monte Carlo method.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2017年第12期1853-1858,共6页
Journal of Tongji University:Natural Science
基金
"十二五"国家科技支撑计划(2014BAF08B05)
关键词
散体力学
物料挖掘过程
响应面法
正交试验
理想点法
granular material mechanics
mining process
response surface method
orthogonal test
ideal point method