期刊文献+

基于神经网络和LSSVM的点火提前角组合预测研究

A Research on Ignition Advance Angle Combined Prediction Based on Neural Network and LSSVM
下载PDF
导出
摘要 针对传统插值法确定汽油机点火提前角精度较低的问题,提出了根据发动机负荷变化的可变最优加权方法,并建立了基于BP-LSSVM的汽油机可变最优加权点火提前角组合预测模型,通过点火提前角预测结果的对比与分析,验证了提出的基于神经网络和LSSVM的汽油机点火提前角组合预测模型的准确性和有效性。 Aiming at the problem that the precision of the ignition advance angle of the gasoline engine determined by the traditional interpolation method is low, a variable optimal weighting method is proposed according to the variation of engine load and a variable optimal weighted combination model of BP-LSSVM ignition advance angle is established. By comparing and analyzing the resuhs of other prediction model, the accuracy and validity of the BP-LSSVM ignition advance angle combined prediction model based on neural networks and LSSVM is verified.
出处 《小型内燃机与车辆技术》 2017年第6期14-17,共4页 Small Internal Combustion Engine and Vehicle Technique
基金 湖南省自然科学基金资助项目(2016JJ2003)
关键词 汽油机 点火提前角 混沌算法 RBF神经网络 Gasoline Engine Ignition advance angle Chaos optimization algorithm RBF neural networks
  • 相关文献

参考文献6

二级参考文献81

共引文献217

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部