期刊文献+

基于人体轮廓检测算法的自习室照明控制系统 被引量:1

Self-study room lighting control system based on human contour detection algorithm
下载PDF
导出
摘要 针对自习室自然光利用率低、电能浪费严重等情况,设计了一种基于人体轮廓检测算法的自习室照明分区控制系统。本地控制器通过Socket通信技术将传感器及摄像头采集到的数据发送到系统服务器,系统服务器通过人体轮廓检测技术及照明分区控制策略处理数据,将处理结果返回本地控制器,控制灯组开闭及恒照度调光。远程手机端通过微信公众平台实时查询自习室人数及光照强度。测试结果表明,本系统运行稳定,具有一定的实用价值。 In view of the low utilization of natural light and serious energy waste in the self-study room, a lighting control system for self-study room is designed based on human contour detection algorithm. The local controller sends the data that collected by sensor and camera to the server by Socket communication technology, the system server analyzes the data by human contour detection algorithm and lighting zoning control strategy, then sends the results to local controller, controls the lamps and realizes the constant illuminance, the remote-mobile can query the number of self-study room and lighting intensity in real time by We Chat. The result shows that the system has remarkable energy saving effect and practical value.
机构地区 延边大学工学院
出处 《计算机时代》 2018年第1期49-53,共5页 Computer Era
关键词 人体轮廓检测 HOG SVM分类算法 分区照明控制 MODBUS协议 human contour detection HOG SVM classification algorithm zoning lighting control Modbus protocol
  • 相关文献

参考文献1

二级参考文献15

  • 1Enzweiler M, Gavrila D M. Monocular Pedestrian Detection: Survey and Experiments [ J ]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179-2195.
  • 2Zhang L, Nevatia R. Efficient Scan-window Based Object Detection Using GPGPU [ C ]//Proceedings of 2008 IEEE Computer Society Confence on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press ,2008 : 1-7.
  • 3Bauer S, Kohler S, Doll K, et al. FPGA-GPU Architecture for Kernel SVM Pedestrian Detection [ C ]// Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C. ,USA:IEEE Press,2010:61-68.
  • 4Chen Yanping,Li Shaozi,Lin Xianming. Fast Hog Feature Computation Based on CUDA [ C ]//Proceedings of 2011 IEEE International Conference on Computer Science and Automation Engineering. Washington D.C., USA: IEEE Press ,2011:748-751.
  • 5Cao T P, Deng Guang. Real-time Vision-based Stop Sign Detection System on FPGA I C //Proceedings of DICTA' 08. Washington D. C. , USA : IEEE Press, 2008 : 465-471.
  • 6Kadota R, Sugano H, Hiromoto M, et al. Hardware Architecture for HOG Feature Extraction I C //Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Washington D.C. , USA: IEEE Press ,2009 : 1330-1333.
  • 7Hiromoto M,Miyamoto R. Hardware Architecture for High- accuracy Real-time Pedestrian Detection with CoHOG Features [ C ]//Proceedings of the 12th International Conference on Computer Vision. Washington D. C. , USA: IEEE Press ,2009:894-899.
  • 8Negi K,Dohi K, Shibata Y, et al. Deep Pipelined Onechip FPGA Implementation of a Real-time Image-based Human Detection Algorithm I C ]//Proceedings of Inter- national Conference on Field-programmable Technology.Washington D. C. , USA : IEEE Press ,2011 : 1-8.
  • 9Mizuno K, Terachi Y, Takagi K, et al. Architectural Study of HOG Feature Extraction Processor for Real- time Object Detection [ C ]//Proceedings of 2012 IEEE Workshop on Signal Processing Systems (SiPS). Washington D. C. , USA : IEEE Press ,2012 : 197-202.
  • 10Hahnle M, Saxen F, Hisung M, et al. FPGA-based Real- time Pedestrian Detection on High-resolution Images[ C // Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press ,2013:629-635.

共引文献76

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部