期刊文献+

基于LBP和栈式自动编码器的人脸识别算法研究 被引量:7

Face recognition based on LBP and stacked autoencoders
下载PDF
导出
摘要 LBP算法对光照敏感且能有效地提取图像的纹理结构特征。提出一种基于局部二值模式(Local Binary Pattern,LBP)和栈式自动编码器(Stacked Autoencoders,SAE)的人脸识别算法。用统一模式LBP算子提取分块后的人脸图像的直方图,按顺序连接形成整幅图像的LBP特征,并将其作为栈式自动编码器的输入,完成进一步的特征提取,实现人脸图像的识别与分类。在Extended Yale B等数据库上的实验结果表明,该算法与传统的人脸识别算法和标准的栈式自动编码器相比,对光照变化有更强的鲁棒性,具有更好的识别效果。 LBP algorithm is robust to illumination and can extract the texture features of face images. A face recognition algorithm based on LBP and stacked auto encoder is proposed in this paper. At first, uniform LBP features are extracted from different blocks of a face image, which are connected together to serve as the description for the whole face. Then,the LBP feature is input to stacked autoencoders. At last, the trained SAE is used to complete the recognition and classification of face images. The experimental results on Extended Yale B face databases demonstrate that the proposed method is robust to illumination. And it has a better recognition performance compared to traditional algorithms and standard stacked autoencoders.
作者 易焱 蒋加伏
出处 《计算机工程与应用》 CSCD 北大核心 2018年第2期163-167,245,共6页 Computer Engineering and Applications
关键词 人脸识别 深度学习 栈式自动编码器 局部二值模式 face recognition deep learning stacked autoencoders local binary pattern
  • 相关文献

参考文献4

二级参考文献132

  • 1黄丽,庄越挺,苏从勇,吴飞.基于多尺度和多方向特征的人脸超分辨率算法[J].计算机辅助设计与图形学学报,2004,16(7):953-961. 被引量:3
  • 2Turk M, Pentland A. Eigenfaces for recognition [J], Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
  • 3Etenmad K, Chellappa R. Discriminant analysis for recognition of human face images [J]. Journal of the Optical Society of America, 1997, 14(8): 1724-1733
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherface: recognition using class special linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
  • 5Yang J, Zhang D, Frangi A F, et al. Two dimensional PCA: a new approach to appearance -based face representation and recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1):131- 137
  • 6Brunelli R, Poggio T. Face recognition: features versus templates [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052
  • 7Beymer D J. Face recognition under varying pose [C] // Proceedings of Computer Vision and Pattern Recognition, Seattle, 1994:756-761
  • 8Nefian A V, Hayes M H. An embedded HMM-based approach for face detection and recognition [C] //Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, 1999, 6:3553-3556
  • 9Martinez A M. Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 748-763
  • 10Sinha P, Balas B, Ostrovsky Y, et al, Face recognition by humans: nineteen results all computer vision researchers should know about[J]. Proceedings of the IEEE, 2006, 94 (11): 1948-1962

共引文献2497

同被引文献89

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部