期刊文献+

基于SIFT和改进的RANSAC图像配准算法 被引量:28

Image registration algorithm based on SIFT and improved RANSAC
下载PDF
导出
摘要 为解决RANSAC算法迭代次数过多导致图像配准精确率不高的问题,提出了一种改进的RANSAC图像配准算法。首先将参考图像和待配准图像进行NSCT变换分解成低频子带和高频子带。然后对高频子带运用矢量夹角算法和结构相似性(SSIM)来提取图像边缘特征点,对低频子带运用SIFT算法并设定合适的距离阈值来提取特征点。最后利用改进的RANSAC算法提高特征点匹配精度,选择出精匹配点对,实现图像配准。实验结果表明,该算法能有效地找到较多的匹配点对,准确地去除误匹配点对,明显地提高了配准精确度。 In order to solve the problem that the accuracy of image registration is not high due to the large number of iterations of RANSAC algorithm, an improved RANSAC image registration algorithm is proposed. First, the reference image and the image to be registered are NSCT transformed into low frequency subband and high frequency subband. Then this paper uses the vector included angle algorithm and Structural Similarity(SSIM)to extract the edge feature points of the high frequency subband, and uses the SIFT algorithm for the low frequency subband and sets the appropriate distance threshold to extract the feature points. Finally, the improved RANSAC algorithm is used to improve the matching of feature points, and the matching points are selected to achieve image registration. The experimental results show that the proposed algorithm can effectively find more pairs of matching points and accurately remove false matching points, which obviously improves the registration accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2018年第2期203-207,共5页 Computer Engineering and Applications
基金 甘肃省自然科学基金(No.0803RJZA109) 甘肃省科技计划资助(No.17YF1FA119)
关键词 尺度不变特征变换(SIFT) 随机抽样一致性(RANSAC) 图像配准 非下采样轮廓波(NSCT)变换 特征点 Scale-Invariant Feature Transform(SIFT) Random Sample Consensus(RANSAC) image registration Non subsampled Contourlet(NSCT)transformation feature point
  • 相关文献

参考文献10

二级参考文献124

  • 1严大勤,孙鑫.一种基于区域匹配的图像拼接算法[J].仪器仪表学报,2006,27(z1):749-750. 被引量:13
  • 2杨必武,倪志斌.图像配准中基于最大熵的模板选取算法研究[J].红外与激光工程,2006,35(z4):98-101. 被引量:1
  • 3汪松,王俊平,万国挺,王乐.基于SIFT算法的图像匹配方法[J].吉林大学学报(工学版),2013,43(S1):279-282. 被引量:5
  • 4D G Lowe. Distinctive image features from seale-invariant keypoints[ J ]. International Journal of Computer Vision, 2004,60 (2) : 90-110.
  • 5Y Ke, R Sukthankar. PCA-SIFT: a more distinctive representation for local image descriptors[ C ]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004.511-517.
  • 6M Brown, D G Lowe. Recognizing Panoramas[ C]. In Proceedings of the 9th International Conference on Computer Vision (ICCV03), Nice, October. 2003.
  • 7F Schaffalitzky, A Zisserman. Multi-view Matching for Unordered Image Sets, or How do 1 Organize my Holiday Snaps? [C]. Proceedings of the 7th European Conference on Computer Vision ( ECCV02), 2002.
  • 8S G Mallat. A theory of multi resolution signal decomposition : The wavelet representation signal decomposition [ J ]. IEEE - PAMI, 1989,11 ( 7 ) :647-693.
  • 9S Mallat. A theory of multi resolution signal decomposition: the wavelet representation[ J]. I EEE Trans. Pattern and Machine Intel 1, 1989,11 (7) :6742693.
  • 10S Mallat. Multi frequency channel decompositions of images and wavelet models [ J ]. IEEE Trans. Accost. , Speech, Signal Process. , 1989,37 (12) :2091-2110.

共引文献349

同被引文献188

引证文献28

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部