期刊文献+

基于低秩近似与非局部稀疏的图像去噪

Image Denoising based on Low Rank Approximation and Nonlocally Sparse Representation
下载PDF
导出
摘要 基于低秩近似方法进行图像去噪逐渐成为图像处理领域研究的热点。将图像块分解成一个低秩矩阵和噪声矩阵,利用矩阵的秩来约束图像块的相似性,且现有的非局部稀疏表示算法利用图像块的自相似性进行去噪。鉴于此,提出低秩近似与非局部稀疏的图像去噪模型。该算法加强了图像分解的全局稀疏性约束,更好地保留了图像的细节和边缘信息。 Image denoising based on low rank approximation is becoming a hot topic in image processing field. The image block can be decomposed into a low rank matrix and a noise matrix,the rank of the matrix can be used to constrain the similarity of the image blocks. And the most existing algorithms based on nonlocal sparse representation also use the self-similarity of image blocks for denoising. In view of this,the image denoising model of low rank approximation and nonlocal sparse is proposed. This algorithm enhances the global sparsity constraint of image decomposition and preserves the details and edge information of the image better.
出处 《湖北工业职业技术学院学报》 2017年第6期103-106,共4页 Journal of Hubei Industrial Polytechnic
基金 国家自然科学基金“自适应字典学习和非局部正则化的图像稀疏恢复建模与算法研究”(No.61362021)阶段性成果
关键词 图像去噪 低秩矩阵近似 非局部自相似 稀疏表示窗体底端 Image denoising low rank approximation nonlocal self-similarity sparse representation
  • 相关文献

参考文献3

二级参考文献37

  • 1查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 2Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 3DA C, ZHOU Jianping, DO M N. The Nonsubsampled contourlet transform: theory, design, and applications [ J ]. IEEE Trans. Image Processing,2006,15 ( 10 ) : 3089-3101.
  • 4WANG Xiangyang,YANG Hongying,Zhang Yu. Image denoising u- sing SVM classification in nonsubsampled contourlet transform do- main[ J ]. Information Sciences ,2013 ( 246 ) : 155-176.
  • 5CHEN D, LI Q. The use of complex contourlet transform on fusion scheme[ J ]. Proceedings of World Academy of Science,Engineering And Technology,2005 (7) :342-347.
  • 6WANG X Y,YANG H Y,FU Z K. A new wavelet-based image de- noising using undeeimated discrete wavelet transform and least squares support vector machine [ J ]. Expert Systems with Applica- tions ,2010,37 (10) :7040-7049.
  • 7GORKEM S,NIZAMETTIN A,OZCAN G H. Directional dual-tree complex wavelet packet transform [ C ]//Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Socie- ty. Osaka: [s. n. ] ,2013:3046-3049.
  • 8SUYKENS J,, VANDEWALLE J. Least squares support vector ma- chine classifiers [ J ]. Neural Processin Letters, 1999, 9 ( 3 ) : 293 -300.
  • 9SAEEDI J, MORADI M, FAEZ K. A new wavelet-based fuzzy sin- gle and multi-channel image denoising[ J ]. Image and Vision Com- puting,2010,28 (12) : 1611-1623.
  • 10BECK A, TEBOULLE M. A fast iterative shrin-kage thresh- olding algorithm for linear inverse problems[ J]. SIAM jour- nal on imaging sciences,2009,2( 1 ) :183-202.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部