期刊文献+

高地隙喷雾机双平行四杆喷雾支架平稳性结构分析 被引量:3

Design and Finite Element Analysis of Spray Boom
下载PDF
导出
摘要 为了改善双平行四杆喷雾支架的平稳性,应用AIP软件建立了以双平行四杆机构为升降装置的喷雾支架三维模型,包括底盘连接件、摆动杆、喷杆连接件、连接杆、加强板和上升油缸6个部分。结果表明:初始双平行四连杆机构安全系数未能满足设计要求,因而对摆动杆、连接杆及加强板所用钢管或钢板的厚度进行了优化,优化后双四连杆机构总质量增加了2.4%,安全系数从0.8增加到了1.16,满足了设计要求;喷雾吊杆的1阶模态频率为12.49Hz,大于10Hz,满足田间作业激励一般不得小于10Hz的要求。在邯郸升华机械厂进行了样机试制,根据载荷与作业情况进行了性能试验,并进行了田间试验,从喷雾吊杆展开到施药喷雾的整个试验过程中,喷雾吊杆施药过程可靠稳定,结构设计合理,达到了设计要求。 In order to improve the stability of double parallel four-bar spray bracket using AIP software to set up a double parallel four-bar mechanism for elevating device of spray bracket model,including connection to the chassis,swinging rods,spray bar connector,connecting rods,reinforcing plate and rise six parts of the fuel tank. Results showed that initial safety coefficient of double parallel four-bar mechanism fails to meet the design requirements,swinging rods,connecting rods,reinforced plate steel or steel plate thickness optimized optimized double four-bar linkage mechanism increases the total mass of 2. 4%,the safety factor has increased from 0. 8 to 1. 16 meets the design requirements; spray boom of a modal frequency is 12. 49 Hz,larger than 10 Hz,meet the requirements of field excitation less than 10 Hz.Prototype in the sublimation machine factory of Handan,performance tests according to the load and operating conditions,and conducted a field experiment,from spray booms to pesticide spraying throughout the testing process,spray boom spraying process reliability and reasonable structure design,meets the design requirements.
出处 《农机化研究》 北大核心 2018年第5期41-45,共5页 Journal of Agricultural Mechanization Research
基金 现代农业装备研发中心建设项目(XDNZ201501) 国家苹果产业体系果园机械岗专项(CARS-28) 国家公益性行业(农业)科研专项(201203016)
关键词 喷雾吊杆 结构改进 有限元分析 高地隙 spray hangers structural improvement of finite element analysis high clearance
  • 相关文献

参考文献2

二级参考文献28

  • 1张宇,朱平,陈关龙,林忠钦.基于有限元法的轿车发动机罩板轻量化设计[J].上海交通大学学报,2006,40(1):163-166. 被引量:50
  • 2Schubert E, Klassen M, Zemer I, et al. Lightweight structures produced by laser beam joining for future applications in automobile and aerospace industry[J]. Journal of Materials Processing Technology, 2001, 115(1): 2-8.
  • 3Joseph C, Benedy K. Light metals in automotive applications[J]. Light Metal Age, 1(10): 34-35.
  • 4Wilian F Powers. Automotive materials in the 21th century[J]. Advanced Materials and Processes, 2005(5): 38-41.
  • 5Merklein M, Geiger M. New materials and production technologies for innovative lightweight constructions[J]. Journal of Materials Processing Technology, 2002(125/126): 532-536.
  • 6Asanafi N, Langstedt G. A new lightweight metal composite-metal panel for applications in the automotive and other industries[J]. Thin-Walled Structures, 2000, 4(36): 289-310.
  • 7青山公彦,樱田彻.商用车の轻量化技术[J].自动车技术,200l,4:23-28.
  • 8Schenkel H. Adhesive bonding in car-body Manufacture[C]. Chinese-German Ultralight Symposium, Beijing, 2001, 9:163-172.
  • 9Brudgam S, Meschut G. Material technologies and joining techniques for multi-material car body structures[C]// Chinese-German Ultealight Symposium, Beijing, 2001, 9 191 -200.
  • 10Masaaki Saito, Shuuichiro Iwatsuki, Kunihiro Yasunaga, et al. Development of Aluminum body for the most fuel efficient vehicle[J]. JSAE Review, 2000(21): 511 - 516.

共引文献58

同被引文献21

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部