期刊文献+

工具变量辅助的变系数测量误差模型的估计 被引量:3

Estimation of error-in-variable varying-coefficient model with auxiliary instrument variables
下载PDF
导出
摘要 考虑协变量有测量误差时变系数模型的估计问题。提出的方法不需要假定特定的误差模型结构或已知的误差方差,也不需要重复观测的数据。通过工具变量的辅助,首先对测量误差进行校正,从而得到真实观察变量的估计。然后用这个估计取代真实观察变量,利用变系数模型的估计方法得到函数系数的估计。证明了所提估计的渐近正态性。数值模拟结果表明本文提出的基于校正误差的方法比直接使用测量误差数据的方法有更好的有限样本性质。 In this work,we consider the estimation of the variable-coefficient model when the covariates are measured with error.We do not specify any model structure of the measurement error,and do not require the knowledge of the variance of measurement error.Furthermore,repeated measurement data are not necessary.With the help of the instrument variable,we calibrate the error and obtain an estimator of the true variable.We replace the true variable by its estimator and get an estimator of the coefficient function by applying the local linear smoothing method.We prove the asymptotic normality of the proposed estimator.The simulation results show that the proposed estimator performs better than the naive estimator.
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第1期1-9,共9页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(11231010 11571340 U1430103) 中国科学院大数据挖掘与知识管理重点实验室开放课题资助
关键词 变系数模型 测量误差 工具变量 校正误差 渐近正态性 variable-coefficient model measurement error instrument variable error calibration asymptotic normality
  • 相关文献

参考文献1

二级参考文献15

  • 1Zhang W, Lee S Y, Song X. Local polynomial fitting in semi-varying coefficient models. J. Multi- variate Anal., 2002, 82: 166-188.
  • 2Zhou X, You J H. Wavelet estimation in varying-coefficient partially linear model. Stat. Probab. Lett., 2004, 68: 91-104.
  • 3Xia Y C, Zhang W Y. Efficient estimation for semivarying-coefficient model. Biometrika, 2004, 91:661 681.
  • 4Fan J Q, Huang T. Profile likelihood inferences on semi-parametric varying-coefficient partially linear models. Bernoulli, 2005, 11(6): 1031-1057.
  • 5You J H, Chen G M. Estimation of a semi-parametric varying-coefficient partially linear errorsin- variables model. J. Multivariate Anal., 2006, 9T: 324-341.
  • 6Wang X L, Li G R, Lin L. Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models. Metrika, 2011, 73: 171-185.
  • 7Owen A B. Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 1988, 75: 237-249.
  • 8Owen A B. Empirical likelihood ratio confidence intervals. Ann. Statist., 1990, 18: 90-120.
  • 9Owen A B. Empirical likelihood ratio for linear models. Ann. Statist., 1991, 19: 1725-1747.
  • 10You J H, Zhou Y, Chen G M. Corrected local polynomail estimation in varying coefficient models with measurement errors. The Canadian Journal of Statistics, 2006, 34: 391-410.

共引文献7

同被引文献16

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部