摘要
社会网络影响力最大化问题是对于给定k值,寻找k个具有最大影响范围的节点集.这是一个优化问题并且是NP-完全的.该问题已经被成功地用于解决诸多实际问题,例如社交营销领域,社交广告策略制定等优化问题.文章介绍了社会网络影响力最大化的基本工作原理,从提取知识类型角度详细阐述了社会网络影响力最大化算法的研究现状和进展,鉴于现存的算法不能够有效地给出全局最优解,我们提出了一种基于社会势能的网络影响力最大化算法,利用实验结果揭示算法的有效性和可行性.
Influence maximization is a problem of finding k nodes as a set that could maximize the spread of influence. This is an optimal and NP-hard problem. This problem has already applied to many real world applications, such as social marketing, social advertising and so forth. In this paper, we first introduce the working principle of influence maximization in social net- works; from the knowledge type point of view,we illustrate the research status of related work. Due to existing algorithms cannot provide the global optimal solutions for this problem, we propose a social potential based influence maximization algorithm. Experiments results demonstrate the effectiveness and feasibility of proposedalgorithm.
出处
《太原师范学院学报(自然科学版)》
2017年第3期55-61,共7页
Journal of Taiyuan Normal University:Natural Science Edition
基金
山西省青年科技研究基金项目(No:2015021102)
山西省回国留学人员科研资助项目(No:2015-068)
关键词
社会网络
影响力
社会势能
影响力覆盖
social network
influence
social potential
influence spread