期刊文献+

基于BP神经网络的机械臂视觉伺服控制 被引量:6

Visual servo control of manipulator arm based on BP neural network
下载PDF
导出
摘要 针对机械臂视觉伺服系统中求解雅可比矩阵计算复杂导致控制实时性差的问题,利用神经网络来辨识机械臂末端执行器位置与各关节角度之间的关系以得到控制器模型,并在保证控制性能和精度的情况下,将神经网络控制器分为全局与局部两部分,通过切换控制器进一步提高伺服控制精度,同时降低神经网络训练成本。在NAO机器人平台对该方法进行实验,在实验环境中利用视觉对目标进行定位并通过神经网络控制完成抓取,从实验结果和与BP(Back Propagation)神经网络的对比实验证明该方法有效地提高了控制精度。 Aiming at the issue that the Jacobian matrix is poor in real-time because of high computational complexity, a neural network was used to identify the relationship between the actuator position and the joint angle of the manipulator to obtain the controller model. The neural network controller was divided into global and local parts, and the switching controller was used to further improve the servo control accuracy, while reducing the training cost of the neural network. In this paper,the experiment was carried out on the NAO robot platform, and the target was positioned in the experimental environment. The experimental results show that, compared with the BP neural network, the proposed method is more effective and accurate for servo control.
出处 《计算机应用》 CSCD 北大核心 2017年第A02期279-282,297,共5页 journal of Computer Applications
关键词 机器人控制 逆雅可比矩阵 神经网络 NAO机器人 robot control inverse Jacobian matrix neural network NAO robot
  • 相关文献

参考文献2

二级参考文献24

  • 1王牛,李祖枢,武德臣,于芳.机器人单目视觉定位模型及其参数辨识[J].华中科技大学学报(自然科学版),2008,36(S1):57-60. 被引量:4
  • 2何国金,胡德永.卫星遥感数据的信息论理解[J].地质科技情报,1997,0(S1):44-48. 被引量:3
  • 3郭磊,徐友春,李克强,连小珉.基于单目视觉的实时测距方法研究[J].中国图象图形学报,2006,11(1):74-81. 被引量:98
  • 4Bischof H, Leonardis A. Finding Optimal Neural Networks for Land Use Classification. IEEE Tran. on Geoscience and Remote Sensing,1998,36(1):337~341.
  • 5Muvai H. Remote Sensing Image Analysis Using a Neural Network and Knowledge-based Processing. International Journal of Remote Sensing,1997,18(4):811~828.
  • 6Venkatesh Y V, Raja S K. On the Classification of Multispectral Satellite Images Using the Multilayer Perceptron. Pattern Recognition, 2003,36:2 161~2 175.
  • 7McClellan G E, DeWitt R N, Hemmer T H, et al. Multispectral Image-processing with a Three-layer Back-propagation Network. International Joint Conference on Neural Networks, Washington D C,1989.
  • 8Zhou J, Civco D. Using Genetic Learning Neural Networks for Spatial Decision Making in GIS. Photogrammetric Engineering and Remote Sensing,1996,62(11):1 287~1 295.
  • 9Mas J F . Mapping Land Use/Cover in A Tropical Coastal Area Using Satellite Sensor Data, GIS and Artificial Neural Networks. Estuarine, Coastal and Shelf Science, 2004(59): 219~230.
  • 10Hagan M T, Menhaj M. Training Feedforward Networks with the Marquardt Algorithm. IEEE Tran. on Neural Networks,1994,5(6):989~993.

共引文献55

同被引文献76

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部