期刊文献+

基于认知发育的移动机器人自主导航 被引量:4

Autonomous Navigation for Mobile Robot Based on Cognitive Development
下载PDF
导出
摘要 针对未知环境中移动机器人的导航问题,基于生物学的认知和发育机理构建自主导航的认知发育模型。通过自主插入神经元节点,设计结构可动态发育的神经网络,模拟生物的发育特性达到与应用需求相匹配的网络规模。通过热力学过程模拟动物的渐近学习特性,设计认知学习算法,并从理论上证明算法的收敛性。实验结果表明,该模型可使机器人模拟动物从环境中自动获取知识、积累经验,通过认知发育具备自主导航技能。 To solve the navigation problem of mobile robot in unknown environment, based on cognitive development mechanism of biology, a cognitive development model is constructed for mobile robot autonomous navigation. The neural network which can dynamically adjust the structure is designed by autonomous inserting neuron. It is used to imitate the properties of biological development and to obtain the network that can match the application requirements. The asymptotic learning characteristic is imitated through the thermodynamic process and a cognitive learning algorithm is designed, which is proved to be convergence in theory. The results of experiments show that the proposed model can make the robot obtain knowledge automatically and accumulate experience from environment like animal, and learn the skill of autonomous navigation through cognitive development.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第1期9-16,共8页 Computer Engineering
基金 国家自然科学基金(61375086) 北京市自然科学基金/北京市教育委员会科技计划重点项目(KZ201610005010)
关键词 认知发育 移动机器人 自主导航 动态发育 认知学习 热力学 cognitive development mobile robot autonomous navigation dynamical development cognitive leaning thermodynamic
  • 相关文献

参考文献3

二级参考文献70

  • 1BAUER A, WOLLHERR D, BUSS M. Human-robot collaboration: a survey[J]. International Journal of Humanoid Robotics, 2008, 5(1): 47 - 66.
  • 2JAN G E, CHANG K Y, PAR.BERRY I. Optimal path planning for mobile robot navigation[J]. IEEE-ASME Transactions on Mechatrioics, 2008, 13(4): 451 - 460.
  • 3BUSONIU L, BABUSKA R, DE SCHUTTER B. A comprehensive survey of multiagent reinforcement learning[J]. IEEE Transactions on Systems, Man and Cybernetics. 2008, 38(2): 156 - 172.
  • 4CARRERSA M, YUB J K, BATLLE J, et al. Application of SONQL for real-time learning of robot behaviors[J]. Robotics and Autonomous System, 2007, 55(8): 628 - 642.
  • 5ARLEO A, SMERALDI E GERSTNER W. Cognitive navigation based on nonuniform Gabor space sampling unsupervised growing networks and reinforcement learning[J]. IEEE Transactions on Neural Networks, 2004, 15(3): 639- 652.
  • 6MAX L, LIKHAREV K K. Global reinforcement learning in neural networks[J]. IEEE Transactions on Neural Networks, 2007, 18(2): 573 - 577.
  • 7TAN A H, LU N, XIAO D. Integrating temporal difference methods and self-organizing neural networks for reinforcementLeaming with delayed evaluative feedback[J]. IEEE Transactions on Neural Networks, 2008, 19(2): 230 - 244.
  • 8LEE J S, LEE H, KIM J Y, et al. Self-organizing neural networks by construction and pruning[J]. IEICE Transactions on Information & Systems, 2004, E87-D(11): 2489 - 2498.
  • 9Skinner B F. The Behavior of Organisms. New York: Appleton-Century-Crofts, 1938. 61-116.
  • 10Skinner B F. Science and Human Behavior. New York: Macmillan, 1953. 45-128.

共引文献17

同被引文献56

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部