期刊文献+

基于改进直线特征提取算法的室内移动机器人地图构建 被引量:2

Indoor Mobile Robot Map Construction Based on Improved Linear Feature Extraction Algorithm
下载PDF
导出
摘要 为使室内移动机器人更好地从充满噪声的2D激光测距仪数据中构建精准地图,提出一种基于相似三角形去噪法则的改进算法。利用分裂算法从预处理数据中提取线段集合,通过改进相似三角形去噪法则对每两分裂点间的数据点进行去噪,将去噪后的数据重新进行分裂,并对每两相邻分裂点间的扫描点进行最小二乘直线拟合。实验结果表明,该算法有效降低部分有效点被剔除的数量,精确度和假阳性指标优于相似三角形去噪法和传统分裂合并算法,同时避免线段合并过程,提高环境建模的鲁棒性和精准性。 In order to make the indoor mobile robot better build the accurate map from the data of2D laser range finder with noise, an improved algorithm based on similar triangules denoising rule is proposed. Using the splitting algorithm to extract the rough line set from the preprocessing data, the data points between the two split points are denoised by improving the similar triangules denoising rule, and the denoised data are re-split, and scanning points are fitted in the data between each two split points by least square method. Experimental results show that the proposed algorithm can reduce the number of effective points which are eliminated, and the accuracy and false positive indexes are better than similar triangles denoising method and traditional split and mergeing algorithm, at the same time, the line segment merging process is basically avoided, and the robustness and accuracy of environment modeling are enhanced.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第1期23-29,共7页 Computer Engineering
基金 国家自然科学基金重点项目(61134002/F03) 国家自然科学基金(61403316) 四川省科技支撑计划项目(2016GZ0101)
关键词 移动机器人 2D激光测距仪 直线特征提取 去噪法则 最小二乘法 mobile robot 2D laser range finder linear feature extraction denoising rule least square method
  • 相关文献

参考文献2

二级参考文献23

  • 1尚振宏,刘明业.运用Freeman准则的直线检测算法[J].计算机辅助设计与图形学学报,2005,17(1):49-53.
  • 2孙涵,任明武,杨静宇.一种快速实用的直线检测算法[J].计算机应用研究,2006,23(2):256-257. 被引量:30
  • 3HOUGH P V C.Methods and Means for Recognizing Complex Patterns: USA,3069654 [P].1962-03-25.
  • 4BONCI A,LEO T,LONGHI S.A Bayesian Approach to the Hough Transform for Line Detection[J].IEEE Transactions on System,Man and Cybernetics: Part A,2005,35(6): 945-955.
  • 5BURNS J B,HANSON A R,RISEMAN E M.Extracting Straight Lines[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(4): 425-455.
  • 6PROKAJ J,DA VITORIA LOBO N.Scale Space Based Grammar for Hand Detection[C]// ZHENG N N,JIANG X Y,LAN X G.Advances in Machine Vision,Image Processing and Pattern Analysis.Lecture Notes in Computer Science Volume 4153.Berlin: Springer,2006: 17-26.
  • 7VON GIOI R G,JAKUBOWICZ J,MOREL J M,et al.LSD: A Fast Line Segment Detector with a False Detection Control[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(4): 722-732.
  • 8VON GIOI R G,JAKUBOWICZ J,MOREL J M,et al.LSD: A Line Segment Detector[J/OL].Image Processing on Line,2013.http://www.ipol.im/pub/art/2012/gjmr-lsd/.
  • 9WU Bo,ZHANG Yunsheng,ZHU Qing.Integrated Point and Edge Matching on Poor Textural Images Constrained by Self-adaptive Triangulations[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68: 40-55.
  • 10徐胜华,朱庆,刘纪平,韩李涛,赵雪莲,张立华.基于预存储权值矩阵的多尺度Hough变换直线提取算法[J].测绘学报,2008,37(1):83-88. 被引量:16

共引文献19

同被引文献25

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部