期刊文献+

公共自行车系统的租赁点聚类与功能识别 被引量:2

Rental Points Clustering and Function Identification of Public Bicycle System
下载PDF
导出
摘要 租赁点功能识别对公共自行车系统的平衡调度和布局规划具有重要作用,而系统中积累的大量历史数据可反映用户在不同时间和地点的社会经济活动,并且与租赁点功能紧密联系。为此,对系统历史数据进行分析,构建公共自行车系统租赁点聚类模型。结合租赁点的时空属性,利用潜在狄利克雷分布模型挖掘租赁点的功能特征,使用K-means聚类算法进行特征聚类。通过集群模式特征分析并使用兴趣点数据和租赁点名称信息对聚类结果进行验证,结果表明,该模型可以有效地辅助系统管理者掌握公共自行车系统租赁点的功能分布。 The function identification of Public Bicycle System(PBS) plays an important role for the balancing scheduling and layout planning of the system. As a new public transport mode,PBS has accumulated more and more data,which not only can reflect the social and economic activities of users at different times and locations,but also has a close connection with the function of the rental points. By combining the spate-time attributes of the leased point and through the historical data analysis of the system ,this paper constructs a rental points clustering model of public bicycle system. It makes use of the Latent Dirichlet Allocation(LDA) model and K-means clustering algorithm to find the functional areas of the system,and through the analysis of the clusters' use features and uses Point of Interest (POI) data and station names to verify the results. The results show that the proposed model can help the system managers grasp the function distribution of the rental 19oints in PBS.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第1期44-50,共7页 Computer Engineering
基金 国家自然科学基金"无线网络基于链路相关性的路由协议优化方法研究"(61672198) 浙江省自然科学基金面上项目"低占空比无线/传感器网络通信模型与协议研究"(Y14F020197)
关键词 公共自行车系统 区域功能 潜在狄利克雷分布模型 K-MEANS算法 数据挖掘 Public Bicycle System ( PBS ) region function Latent Diriehlet Allocation (LDA) model K-meansalgorithm data mining
  • 相关文献

参考文献2

二级参考文献83

  • 1赵金山,狄增如,王大辉.北京市公共汽车交通网络几何性质的实证研究[J].复杂系统与复杂性科学,2005,2(2):45-48. 被引量:45
  • 2陆化普,石冶.Complexity of Public Transport Networks[J].Tsinghua Science and Technology,2007,12(2):204-213. 被引量:13
  • 3李英,周伟,郭世进.上海公共交通网络复杂性分析[J].系统工程,2007,25(1):38-41. 被引量:65
  • 4郑宇,谢幸.基于用户轨迹挖掘的智能位置服务[J].中国计算机学会通讯,2010,6(6):23-30.
  • 5Zheng Y, Capra L, Wolfson O, et al. Urban Com- puting: Concepts, Methodologies, and Applications [J]. ACM Transactionson Intelligent Systems and Technology, 2014,3 (5), DOI: 10. 1145/1290002. 129O0O3.
  • 6Zheng Y, Liu Y, Yuan J, et al. Urban Computing with Taxicabs[C]. UbiComp,Beijing, 2011.
  • 7Yuan J, Zheng Y, Xie X. Discovering Regions of Different Functions in a City Using Human Mobility and POIs[C]. KDD, Beijing,2012.
  • 8Wang Y, Zheng Y, Xue Y. Travel Time Estimation of a Path Using Sparse Trajectories[C]. KDD, New York, 2014.
  • 9Yuan J, Zheng Y, Zhang C, et al. T-Drive: Driving Directions Based on Taxi Trajectories[C]. SIGSPA- TIAL GIS,San Jose, California, 2010.
  • 10Yuan J, Zheng Y, Xie X, et al. Driving with Knowledge from the Physical World[C]. KDD,San Diego, California, 2011.

共引文献315

同被引文献14

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部