期刊文献+

溶胶-凝胶法制备条件对Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2电化学性能的影响 被引量:2

Influence of the Synthesis Condition of Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 on the Electrochemical Properties
下载PDF
导出
摘要 以柠檬酸为螯合剂,采用溶胶-凝胶法通过调节煅烧温度和陈化时间制备了不同粒径的富锂正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2。结果表明材料的粒径随煅烧温度增加,逐渐增大;随着陈化时间的增加,呈现先增大后变小的趋势。当煅烧温度为850℃,陈化时间为10 d时,材料具有最优的电化学性能,尤其是倍率性能。在2.0~4.8 V的电压范围内以0.1 C充放电循环60周后放电比容量仍为206.7 m Ah·g-1,2.0 C时的放电比容量为125.6 m Ah·g-1。 To meet the increasing demand for lithium-ion batteries, the electrochemical properties of Li- rich layered oxides (LLOs), Li1.2Mn0.54Ni0.13Co0.13O2, one of the cathodes with high capacity, are still needed to be improved. Using citric acid as a chelating agent, the LLOs with different particle sizes were prepared by sol-gel method under different calcination temperature and aging times. The samples were characterized by X-ray diffraction and scanning electron microscopy. The results indicate that the particle size grows with the increase of calcination temperature, and firstly increases and then decreases when the aging time is prolonged. When the calcination temperature is 850 ~C and ages for 10 days, the material presents the best electrochemical performance, especially rate performance. When the Li1.2Mn0.54Ni0.13Co0.13O2 electrode is charged and discharged at 0. 1 C between 2.0 - 4.8 V, the discharge capacity is still 206.7 mAh·g^-1 after 60 cycles and the discharge capability is 125.6 mAh·g^-1 at 2, 0 C.
出处 《化学工业与工程》 CAS CSCD 2018年第1期1-7,共7页 Chemical Industry and Engineering
基金 国家高技术研究发展计划(2013AA050901)资助项目
关键词 锂离子电池 富锂层状氧化物 溶胶-凝胶法 陈化时间 lithium-ion batteries Li-rich layered oxides sol-gel method aging time
  • 相关文献

参考文献3

二级参考文献19

  • 1YANG S,SONG Y,WHITTINGHAM M S.Reactivity stability and electrochemical behavior of lithium iron phosphates[J].Electrochem Communication,2002,4:239-244.
  • 2CHEN Zhao-hui,DAHN J R.Reducing carbon in LiFePO4 /C composite electrodes to maximize specific energy,volumetric energy,and tap density[J].Journal of the Electrochemical Society,2002,149(9):1 184-1 189.
  • 3SYLVAIN F,CAROLE B.Comparison between different LiFePO4 synthesis routes and their influence on its physicochemical properties[J].Journal of Power Sources,2003,119:252-257.
  • 4Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-Stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. Journal of Materials Chemistry, 2007, 17: 3 112-3 125.
  • 5Marom R, Amalraj S F, Leifer N, et al. A review of advanced and practical lithium battery materials [J]. Journal of Materials Chemistry, 2011, 21: 9 938-9 954.
  • 6Goodenough J B, Kim Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22: 587-603.
  • 7Lu Z, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 [J]. Journal of the Electrochemical Society, 2002, 149: A778-A791.
  • 8Liu Jun, Manthiram A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. Journal of Materials Chemistry, 2010, 20: 3 961-3 967.
  • 9Kang Y J, Kim J H, Lee S W, et al. The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery[J]. Electrochimica Acta, 2005, 50: 4 784-4 791.
  • 10Zheng J, Zhang Z, Wu X, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery[J]. Journal of the Electrochemical Society, 2008, 155(10): A775-A782.

共引文献5

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部