期刊文献+

Engineering in-plane silicon nanowire springs for highly stretchable electronics 被引量:1

Engineering in-plane silicon nanowire springs for highly stretchable electronics
原文传递
导出
摘要 Crystalline silicon(c-Si) is unambiguously the most important semiconductor that underpins the development of modern microelectronics and optoelectronics, though the rigid and brittle nature of bulk c-Si makes it difficult to implement directly for stretchable applications. Fortunately, the one-dimensional(1 D) geometry, or the line-shape, of Si nanowire(SiNW) can be engineered into elastic springs, which indicates an exciting opportunity to fabricate highly stretchable 1 D c-Si channels. The implementation of such line-shape-engineering strategy demands both a tiny diameter of the SiNWs, in order to accommodate the strains under large stretching, and a precise growth location, orientation and path control to facilitate device integration. In this review, we will first introduce the recent progresses of an in-plane self-assembly growth of SiNW springs, via a new in-plane solid-liquidsolid(IPSLS) mechanism, where mono-like but elastic SiNW springs are produced by surface-running metal droplets that absorb amorphous Si thin film as precursor. Then, the critical growth control and engineering parameters, the mechanical properties of the SiNW springs and the prospects of developing c-Si based stretchable electronics, will be addressed. This efficient line-shape-engineering strategy of SiNW springs, accomplished via a low temperature batch-manufacturing, holds a strong promise to extend the legend of modern Si technology into the emerging stretchable electronic applications, where the high carrier mobility, excellent stability and established doping and passivation controls of c-Si can be well inherited. Crystalline silicon(c-Si) is unambiguously the most important semiconductor that underpins the development of modern microelectronics and optoelectronics, though the rigid and brittle nature of bulk c-Si makes it difficult to implement directly for stretchable applications. Fortunately, the one-dimensional(1 D) geometry, or the line-shape, of Si nanowire(SiNW) can be engineered into elastic springs, which indicates an exciting opportunity to fabricate highly stretchable 1 D c-Si channels. The implementation of such line-shape-engineering strategy demands both a tiny diameter of the SiNWs, in order to accommodate the strains under large stretching, and a precise growth location, orientation and path control to facilitate device integration. In this review, we will first introduce the recent progresses of an in-plane self-assembly growth of SiNW springs, via a new in-plane solid-liquidsolid(IPSLS) mechanism, where mono-like but elastic SiNW springs are produced by surface-running metal droplets that absorb amorphous Si thin film as precursor. Then, the critical growth control and engineering parameters, the mechanical properties of the SiNW springs and the prospects of developing c-Si based stretchable electronics, will be addressed. This efficient line-shape-engineering strategy of SiNW springs, accomplished via a low temperature batch-manufacturing, holds a strong promise to extend the legend of modern Si technology into the emerging stretchable electronic applications, where the high carrier mobility, excellent stability and established doping and passivation controls of c-Si can be well inherited.
出处 《Journal of Semiconductors》 EI CAS CSCD 2018年第1期2-15,共14页 半导体学报(英文版)
基金 supported by the National Basic Research 973 Program(No.2014CB921101) the National Natural Science Foundation of China(No.61674075) the National Key Research and Development Program of China(No.2017YFA0205003) the Jiangsu Excellent Young Scholar Program(No.BK20160020) the Scientific and Technological Support Program in Jiangsu Province(No.BE2014147-2) the Jiangsu Shuangchuang Team's Personal Program the Fundamental Research Funds for the Central Universities the China Scholarship Council and the Postgraduate Program of Jiangsu Province(No.KYZZ160052)
关键词 c-Si nanowires in-plane solid-liquid-solid self-assembly stretchable electronics c-Si nanowires in-plane solid-liquid-solid self-assembly stretchable electronics
  • 相关文献

同被引文献8

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部