摘要
针对目前变压器风冷控制系统中存在的问题,设计了基于模糊神经网络PID技术的变频调节风冷控制系统。该系统以PLC及变频器为核心控制设备,采用模糊RBF神经网络,并选用2-7-7-3结构形式,优化PID的控制参数,以精确控制变频器的输出频率。通过仿真及试验,验证该系统比常规PID具有更好的动、静态特性和自适应性,可以快速跟踪变压器油温变化,使变压器的散热量与发热量实时平衡,以达到节能运行目的。
As to the existing problems in the control system of transformer air cooling, a frequency conversion air cooling control system based on fuzzy neural network PID technology is designed. The system takes PLC and frequency converter as the core control equipment, adopts fuzzy RBF neural network, and selects 2-7-7-3 structure to optimize the control parameters of PID, so as to accu-rately control the output frequency of the frequency converter. Through simulation and experiment, it is proved that the system has better dynamic and static characteristics and adaptability than conventional PID, and can track the change of transformer oil tempera-ture quickly, and make the heat loss and heat emission of transformer real-time balance, in order to achieve the purpose of energy-saving operation.
出处
《科技创新与应用》
2018年第4期23-24,共2页
Technology Innovation and Application
基金
住建部科学技术项目计划"建筑配电电能质量监测及漏电火灾预警系统研发"(编号:2014-K8-064)
"民用新能源发电并网检测与控制装置研究"(编号:2014-K1-067)
吉林省科技发展计划"民用新能源发电并网检测与控制装置关键技术研究"(编号:20150204044SF)
"电气火灾预警系统关键技术研究及应用"(编号:20160204019SF)
吉林省省级经济结构战略调整引导资金专项"工变频双模智能型变压器风冷控制装置开发"(编号:2014Y121)
关键词
模糊神经网络
PID
变频
风冷控制系统
fuzzy neural network
PID
frequency conversion
air cooling control system