期刊文献+

一种基于LWE的BGN加密及门限加密方案 被引量:2

A BGN-Type Encryption from LWE with a Threshold Encryption Scheme
下载PDF
导出
摘要 BGN加密方案是指允许密文任意次加法和一次乘法运算的加密方案,并且在密文的运算中,密文的规模没有增长。BGV12加密方案是基于(G)LWE的全同态加密方案,为了实现乘法同态,需要用到密钥交换、模转换等技术。该文在BGV12基础上构造了一种BGN加密方案。虽然只能支持密文的一次乘法运算,但不需要其他技术的支持,因而更快捷。与GVH10加密方案相比,有更好的参数规模。此外,将BGN加密方案扩展成一种门限加密方案,该门限加密方案同样允许所有参与者共同解密一个密文而没有泄露明文的任何信息,并且能抵抗密钥泄露攻击。 The BGN (Boneh-Goh-Nissim) cryptosystem is a cryptosystem that permits arbitrary number of additions and one multiplication of ciphertext without growing the size of ciphertext. The scheme of BGV12 is a fully homomorphic encryption from (G)LWE which needs key switching, modulus switching and other technologies for the multiplicative homomorphism. This paper describes a BGN scheme based on BGV12. Although our constructed scheme only permits one multiplication, it does not need other technologies, so it is more efficient. Comparing with the scheme of GVH10, our scheme has better size of parameter. In addition, we extend our scheme to a threshold encryption scheme, which allows parties to cooperatively decrypt a ciphertext without learning anything but the plaintext, and can be protected from related-key attacks.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第1期95-98,111,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61472097) 信息安全国家重点实验室开放课题(2016-MS-10)
关键词 BGN加密 密钥同态 LWE问题 门限加密 BGN-type cryptosystem key-homomorphic learning with error problem threshold encryption
  • 相关文献

参考文献1

二级参考文献10

  • 1Oded Regev.On lattices, learning with errors, random linear codes, and cryptography[J].Journal of the ACM (JACM).2009(6)
  • 2Johannes Bl?mer,Stefanie Naewe.Sampling methods for shortest vectors, closest vectors and successive minima[J].Theoretical Computer Science.2009(18)
  • 3Phong Q. Nguyen,Thomas Vidick.Sieve algorithms for the shortest vector problem are practical[J].Journal of Mathematical Cryptology.2008(2)
  • 4Jean-Sebastien Coron,Alexander May.Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring[J].Journal of Cryptology.2007(1)
  • 5Dorit Aharonov,Oded Regev.Lattice problems in NP ∩ coNP[J].Journal of the ACM (JACM).2005(5)
  • 6Subhash Khot.Hardness of approximating the shortest vector problem in lattices[J].Journal of the ACM (JACM).2005(5)
  • 7Phong Q. Nguyen,Igor E. Shparlinski.The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces[J].Designs Codes and Cryptography.2003(2)
  • 8I. Dinur,G. Kindler,R. Raz,S. Safra.Approximating CVP to Within Almost-Polynomial Factors is NP-Hard[J].COMBINATORICA.2003(2)
  • 9Irit Dinur.Approximating SVP ∞ to within almost-polynomial factors is NP-hard[J].Theoretical Computer Science.2002(1)
  • 10Jin-Yi Cai.A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection factor[J].Discrete Applied Mathematics.2002(1)

共引文献44

同被引文献32

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部