期刊文献+

基于微分几何的蛇板系统动力学建模与运动规划 被引量:3

Dynamics Modeling and Motion Planning for Snakeboard Systems Based on Differential Geometry
下载PDF
导出
摘要 研究了蛇板系统的动力学建模与运动规划问题,提出一种遗传算法与Gauss伪谱法相结合的混合优化策略.首先,基于微分几何中的Riemann(黎曼)流形与仿射映射理论,建立蛇板系统在其构型流形上的Euler-Lagrange(欧拉-拉格朗日)方程.蛇板的构型空间对应流形空间,速度空间对应流形切空间,力矩空间对应流形余切空间,惯量矩阵提供了流形空间上的一个Riemann度量.构造适当的基底描述蛇板系统的许可速度,可以使蛇板系统的运动方程得到简化.然后,利用Gauss伪谱法将蛇板系统运动规划问题离散为非线性规划问题,利用序列二次规划算法求解蛇板系统的运动轨迹与最优控制输入,其中,Gauss伪谱法的初值通过遗传算法得到.最后,通过数值仿真,蛇板系统的运动轨迹与实际情况吻合,最优控制输入也能很好地满足约束条件,验证了该混合优化策略的有效性. Dynamics modeling and motion planning for snakeboard systems were investigated,and a hybrid optimization strategy based on the genetic algorithm( GA) and the Gauss pseudospectral method( GPM) was presented. Firstly,the Euler-Lagrange equations for the snakeboard system were derived based on the Riemannian manifold and the affine connection theory in differential geometry. The configuration space of the snakeboard corresponds to the manifold space,the velocity space corresponds to the tangent space,the torque space corresponds to the cotangent space,and the inertia matrix provides a Riemannian measure on the manifold. The set of admissible velocities were represented by the appropriate bases to simplify the kinematics equations. Then the optimal motion planning problem was transformed into a nonlinear programming problem with the GPM. The optimal trajectory and the optimal control inputs were obtained with the sequential quadratic programming( SQP) algorithm. The GA was applied to generate the initial values of the GPM. Finally,through numerical simulation,the optimal trajectory agrees well with actual conditions,and the control inputs match the various constraints closely. The results demonstrate the effectiveness of the proposed method.
出处 《应用数学和力学》 CSCD 北大核心 2018年第1期29-40,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11472058)~~
关键词 运动规划 微分几何 蛇板系统 GAUSS伪谱法 最优控制 motion planning differential geometry snakeboard system Gauss pseudospectral method (GPM) optimal control
  • 相关文献

参考文献7

二级参考文献76

  • 1戈新生,陈立群,吕杰.空间机械臂非完整运动规划的遗传算法研究[J].宇航学报,2005,26(3):262-266. 被引量:36
  • 2Dubowsky S, Papadopoulos E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems [ J ]. IEEE Transactions on Robotics and Automation, 1993, 9 (5) : 531 - 542.
  • 3Dubowsky S, Tortes M. Path planning for space manipulators to minimizing spacecraft attitude disturbance [ C ]. IEEE International Conference on Robotics and Automation, Sacramento, USA, April 9 - 11 , 1991.
  • 4Nenchev D, Umetani Y, Yoshida K. Analysis of a redundant free-flying spacecraft/manipulator system[J]. IEEE Transactions on Robotics and Automation, 1992, 8( 1 ) : 1 -6.
  • 5Yoshida K, Hashizume K, Abiko S. Zero reaction maneuver: Flight validation with ETS -VII space robot and extension to kinematically redundant arm [ C ]. IEEE International Conference on Robotics and Automation, Seoul, Korea, May 21 -26, 2001.
  • 6Bloch A M . Nonholonomic mechanics and control. Spring- er-Verlag, New York, 2003.
  • 7Cortes Monforte J. Geometric Control and Numerical As- pects of Nonholonomic Systems. Springer-Verlag, New York, 2002.
  • 8Hulme B L. One-step piecewise polynomial Galerkin meth- ods for initial value problems. Math. Comput, 1972, 26 (118) : 415-426.
  • 9Betsch P, Steinmann P. Conservation properties of a time FE method-part III: Mechanical systems with holonomic constraints. International Journal for Numerical Methods in Engineering, 2002,53 : 2271 -2304.
  • 10Cortes J. Energy conserving nonholonomic integrators. Pro- ceedings of the fourth international conference on dynamical systems and differential equations, Wilmington, NC, USA. 2002 : 189 - 199.

共引文献76

同被引文献46

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部