期刊文献+

学习仪表盘个性化设计研究 被引量:10

Research on Personalized Design of Learning Analytics Dashboard
下载PDF
导出
摘要 作为"数据驱动教学"的核心,学习仪表盘适用于具有差异的学习者,须解决数据呈现的共性与个性之间的矛盾。研究围绕学习仪表盘的个性化设计展开探索,旨在提供核心指标的基础上,为不同人格偏好学习者呈现个性化的指标。利用"模式识别技术"判定学习者人格特质,基于复制自适应方式建立静态区域与自适应区域,设计了包含"数据指标"以及"前置工具"的自适应呈现内容。设计原型的感知比较验证了设计的合理性;学习行为水平以及成绩的准实验研究表明,学习仪表盘通过恰当的呈现方式放大学习者的感知,从而提升了特定的行为表现;通过推送匹配人格特质的数据指标强化了使用动机,从而助力学习目标的达成。 Learning Analytics Dashboard (LAD), the core of data-driven instruction, is suitable for learners with different characteristics, and needs to solve the conflict between university and individuality presented by data. This study focuses on the individualized design of LAD and aims to present personalized indicators for learners with different personalities through providing the core indicators. This study uses "pattern recognition technology" to judge learners" personalities, establishes a static region and an adaptive region on based on the replication of the adaptive, and designs adaptive contents including "data indicators" and "front tools". The perceptual comparison of the design prototype verifies its rationality. The quasi-experimental study of learning behavior level and exam results show that LAD magnifies learners" perceptions through appropriate presentation, and enhances their specific behaviors. By pushing the data matching learners" personalities, their motivations are strengthened, which is good for the achievement of learning goals.
作者 张琪 武法提
出处 《电化教育研究》 CSSCI 北大核心 2018年第2期39-44,52,共7页 E-education Research
基金 2014年全国教育科学"十二五"规划教育部重点课题"基于教育大数据的学习分析工具设计与应用研究"(课题编号:DCA140230)
关键词 学习仪表盘 学习分析工具 自适应界面 人格特质 设计研究 Learning Analytics Dashboard Learning Analytics Tool Adaptive User Interface Personality Design Research
  • 相关文献

参考文献1

二级参考文献26

  • 1孙正兴,彭彬彬,丛兰兰,孙建勇,张斌.在线草图识别中的用户适应性研究[J].计算机辅助设计与图形学学报,2004,16(9):1207-1215. 被引量:10
  • 2Schneider-Hufschmidt M, Kuhme T, Malinowski U. Adaptive User Interfaces: Principles and Practice. New York: Elsevier Science lnc, 1993.
  • 3Viano G, Parodi A, Alty J. Adaptive user interface for process control based on multi-agent approach//Proceedings of the Working Conference on Advanced Visual Interfaces (ACM AVI '00). Palermo, Italy, 2000: 201-204.
  • 4Liu J, Wong C K, Hui K K. An adaptive user interface based on personalized learning. IEEE Intelligent Systems, 2003, 18(2): 52-57.
  • 5Burnett M, Cook C, Rothermel G. End-user software engineering. Communications of the ACM, 2004, 47(9): 53-58.
  • 6Malinowski U, Kahme T, Dieterich H. A taxonomy of adaptive user interfaces//Proceedings of the Conference on People and Computers VII. York, United Kingdom, 1993: 391-414.
  • 7Findlater L, McGrenere J. A comparison of static, adaptive and adaptable menus//Proceedings of the SIGCHI Confer ence on Human Factors in Computing Systems. Vienna,Australia, 20041 89-96.
  • 8Lavie T, Meyer J. Benefits and costs of adaptive user interfaces. International Journal of Human-Computer Studies, 2010, 68(8): 508-524.
  • 9Martins C, Azevedo I, de Carvalho C V. The use of an adap- tive hypermedia learning system to support a new pedagogical model//Proceedings of the 5th IEEE International Confer- ence on Advanced Learning Technologies. Kaohsiung, China, 2005:832-833.
  • 10Johnson C M, Johnson T R, Zhang Jiajie. A user-centered framework for redesigning health care interfaces. Journal of Biomedical Informaties, 2005, 38(1): 75-87.

共引文献10

同被引文献103

引证文献10

二级引证文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部