期刊文献+

基于Curvelet变换特征的人脸识别算法 被引量:5

FACE RECOGNITION ALGORITHM BASED ON CURVELET TRANSFORM FEATURE
下载PDF
导出
摘要 针对小波变换无法准确表达二维奇异曲线的弱点,提出基于曲波(Curvelet)变换特征的人脸识别算法。Curvelet变换可以很好地去逼近奇异曲线,对于人脸图像能实现最优的稀疏表示。该算法采用基于Wrapping的离散Curvelet变换加权算法对训练集的人脸图像进行特征提取生成特征矩阵,再通过PCA方法降低维数后结合稀疏表示分类算法(SRC)进行人脸识别。通过在ORL、Yale和AR三个人脸数据库上的仿真实验以及和基于小波变换类识别算法、LDA算法和SRC算法等比较,实验结果表明该算法在人脸遮挡、姿态变换、表情变换和光照变换等干扰因素的作用下具有较高的人脸识别率和较好的鲁棒性。 In view of the weakness that the wavelet transform cannot express the two-dimensional singular curve accurately, a face recognition algorithm based on Curvelet transformation was proposed in this paper. Curvelet transform can be very good to approximate the singular curve, for the face image can achieve the optimal sparse representation. In this paper, we used the Wrapping-based discrete Curvelet transform weighting algorithm to extract feature matrices from the face images of the training set, and then used the PCA method to reduce the dimension and combined the sparse representation classification algorithm (SRC) for face recognition. Through the simulation experiments on ORL, Yale and AR face database and the comparison with wavelet transform class recognition algorithm, LDA algorithm and SRC algorithm, the experimental results showed that the proposed algorithm had high face recognition rate and good robustness under the influence of interference factors such as face occlusion, gesture transformation, expression transformation and illumination transformation.
出处 《计算机应用与软件》 北大核心 2018年第1期169-174,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61572234)
关键词 小波变换 奇异曲线 曲波变换 稀疏表示 鲁棒性 Wavelet transform Singular curve Curvelet transform Sparse representation Robustness
  • 相关文献

参考文献4

二级参考文献32

  • 1宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 2苏从勇,庄越挺,黄丽,吴飞.基于正交图像生成人脸模型的合成分析方法[J].浙江大学学报(工学版),2005,39(2):175-179. 被引量:11
  • 3宋枫溪,杨静宇,刘树海,张大鹏.基于多类最大散度差的人脸表示方法[J].自动化学报,2006,32(3):378-385. 被引量:17
  • 4Heusch G, Rodriguez Y, Marcel S. Local Binary Patterns as an Image Preprocessing for Face Authentication[C]//Proc. of the 7th International Conference on Automatic Face and Gesture Recognition. IS. 1.]: IEEE Press, 2009.
  • 5Chu Rufeng, Liao Shengcai, Zhang Lun, et al. Illumination Invariant Face Recognition Using Near-infrared Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 627-639.
  • 6Chan Chi-Ho, Kittler J, Messer K. Multi-scale Local Binary Pattern Histograms for Face Recognition[Z]. 2007.
  • 7Candes E J, Donoho D L. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges[EB/OL]. (2010-11-21). http://www.Curvelet.org/papers/Curve99.pdf.
  • 8Tanaya M Q M, Jonathan W, Yuan Yuan. Curvelet Based Face Recognition via Dimension Reduction[J]. Signal Processing, 2009, 89(12): 2345-2353.
  • 9Aroussi M, Hassotmi M, Ghouzali S, et al. Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition[J]. International Journal of Computer Science, 2009, 4(1): 72-77.
  • 10Candels E J, Demanet L, Donoho D L. Fast Discrete Curvelet Transform[Z]. 2005.

共引文献23

同被引文献65

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部