期刊文献+

基于深度学习的鱼类分类算法研究 被引量:36

FISH CLASSIFICATION ALGORITHM BASED ON DEPTH LEARNING
下载PDF
导出
摘要 回顾近年来国内外对鱼类分类的研究进展,指出传统方法存在的缺陷。深度学习是目前图像分类的主流方法。研究基于卷积神经网络CNN(Convolutional Neural Network)的鱼类分类模型,并以该模型为基础,进一步提出利用迁移学习,以预训练网络的特征结合SVM算法(Pre CNN+SVM)的混合分类模型。实验以Fish4-Knowledge(F4 K)作为数据集,使用Tensor Flow训练网络模型。实验结果表明,利用Pre CNN+SVM算法,取得了98.6%的准确率,较传统方法有显著提高。对于小规模数据集,有效解决了需要人工提取特征的不可迁移性。 Reviewing the research progress of fish classification at home and abroad in recent years, the shortcomings of the traditional methods are pointed out. Deep learning is the mainstream method of image classification. This paper studied the fish classification model based on Convolutional Neural Network (CNN). Based on this model, we proposed a hybrid model based on transfer learning algorithm using pre-training neural network and SVM algorithm (PreCNN + SVM). The experimental results showed that using PreCNN + SVM algorithm with Fish4-Knowledge (F4K) data sets and TensorFlow model, the accuracy of 98.6% was achieved, which was significantly higher than the traditional method. For small-scale data sets, it effectively solved the immutability that need to extract features manually.
作者 顾郑平 朱敏
出处 《计算机应用与软件》 北大核心 2018年第1期200-205,共6页 Computer Applications and Software
关键词 深度学习 卷积神经网络 迁移学习 支持向量机 Deep learning Convolutional neural network Transfer learning SVM
  • 相关文献

参考文献3

二级参考文献31

  • 1Rumpf T, R?mer C, Weis M, et al.Sequential support vector machine classification for small-grain weed species discrimination with special regard to cirsium arvense and galium aparine[J].Computers and Electronics in Agriculture, 2012, 80(S): 89-96.
  • 2Arribas J I, Sánchez-Ferrero G V, Ruiz-Ruiz G, et al.Leaf classification in sunflower crops by computer vision and neural networks[J].Computers and Electronics in Agriculture, 2011, 78(1): 9-18.
  • 3R?mer C, Bürling K, Hunsche M, et al.Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines[J].Computers and Electronics in Agriculture, 2011, 79(2): 180-188.
  • 4White D J, Svellingen C, Strachan N J C.Automated measurement of species and length of fish by computer vision[J].Fisheries Research, 2006, 80(2): 203-210.
  • 5Alsmadi M K, Omar K B, Noah S A, et al.Fish recognition based on robust features extraction from size and shape measurements using neural network[J].Journal of Computer Science, 2010, 6(10): 1088-1094.
  • 6Xin Y, Pawlak M, Liao S.Accurate computation of Zernike moments in polar coordinates[J].IEEE Transactions on Image Processing, 2007, 16(2): 581-587.
  • 7Yap P T, Paramesran R, Ong S H.Image analysis by Krawtchouk moments[J].IEEE Transactions on Image Processing, 2003, 12(11): 1367-1377.
  • 8Alsmadi M K, Omar K B, Noah S A M.Fish classification based on robust features extraction from color signature using back-propagation classifier[J].Journal of Computer Science, 2010, 7(1): 52-58.
  • 9Hu Jing, Li Daoliang, Duan Qingling, et al.Fish species classification by color, texture and multi-class support vector machine using computer vision[J].Computers and Electronics in Agriculture, 2012, 88(s): 133-140.
  • 10Alsmadi M K, Omar K B, Noah S A, et al.A hybrid memetic algorithm with back-propagation classifier for fish classification based on robust features extraction from PLGF and shape measurements[J].Information Technology Journal, 2011, 10(5): 944-954.

共引文献2318

同被引文献313

引证文献36

二级引证文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部