期刊文献+

靶向抗肿瘤药物致高血糖发生机制的研究进展 被引量:3

Research progress on the mechanism of anti-tumor drugs causing hyperglycemia
原文传递
导出
摘要 肿瘤是全球第二大死亡原因,新一代肿瘤治疗进展较快,如靶向肿瘤治疗。与常规化疗一样,靶向药物可抑制癌细胞,增加癌细胞死亡并限制癌细胞扩散。靶向治疗对多种疾病(包括肺癌、结肠直肠癌、乳腺癌、淋巴瘤和白血病)有较好的疗效。多种靶向药物有不同于传统化疗、放疗的不良反应,如可诱发治疗性相关血糖升高。通过药物纳米封包改变给药途径为探究二甲双胍的抗癌作用提供了可能的解决方案。本文综述了抗肿瘤的代表性靶点(mTOR、IR/IGFR、EGFR和P13K/AKT)药物致血糖升高发生机制的研究进展。 Tumor is the second leading cause of death in the world, and new generations of tumor treatment progTesses fast, for example targeted tumor therapy. Targeted drugs, similar to conven- tional chemotherapy, can inhibit cancer cells, increase cancer cell death and limit cancer cell prolifera- tion. Targeted therapy have a good effect on a variety of diseases, such as lung cancer, colorectal canc- er, breast cancer, lymphoma and leukemia. Many targeted drugs have different side effects from tradi- tional chemotherapy and radiotherapy, for example it can induce therapeutic relevance hyperglycemia. The route of administration is changed with drugs encapsuled in targeted nanoparticles and it provides ac- cessibility to investigate the anti-cancer effect of Metformin. This review summarized the research progress of machanism of anti-tumor representative targets drugs (mTOR, IR/IGFR, EGFR and PI3K/AKT) on inducing blood suger increasing.
机构地区 南通大学医学院
出处 《中国实用医刊》 2017年第23期123-126,共4页 Chinese Journal of Practical Medicine
基金 2012年市级社会事业科技创新与示范计划项目(HS2012070) 江苏省高校自然科学研究项目(JB310016)
关键词 靶向抗肿瘤治疗 抗肿瘤药物 不良反应 研究进展 Targeted cancer therapy Antineoplastic drugs Side effects Research progress
  • 相关文献

参考文献1

二级参考文献44

  • 1Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulkl. Nat Cell Biol 2011; 13:132-141.
  • 2Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149:274-293.
  • 3Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013; 339:1323-1328.
  • 4Robitaille AM, Christen S, Shimobayashi M, et al. Quantita- tive phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 2013; 339:1320-1323.
  • 5Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122-1128.
  • 6Sarbassov DD, Oucrtin DA, Ali SM, Sabatini DM. Phosphor- ylation and regulation of Akt/PKB by thc dctor-mTOR cam- plex. Science 2005; 307: 1098-1101.
  • 7Sarbasqov DD, Ali SM, Sengupta S, et al. Prolonged rapamy- cin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22:150-168.
  • 8(iarcia-Martincz J M, Alessi DR. roTOR complex 2 (mTORC2) controla hydrophobic motif phosphorylation and activation of serum- and glueocorticoid-indueed protein kinase 1 (SGK1). Riochem J 2008; 416:375-385.
  • 9Guertin DA, ,qtcvcns DM, Thorcen CC, et al. Ablation in mice of the mTORC componcnts raptor, rictor, or mLST8 rcveals that mTORC2 is required for sip, haling to Akt-FOXO and PKCalpha, but not S6K 1. Dev Cell 2006; 11:859-871.
  • 10Dibble CC, Asara JM, Manning BD. Characterization of Ric- tor phosphorylation sites reveals direct regulation of roTOR complex 2 by S6K 1. Mol Cell Biol 2009; 29:5657-5670.

共引文献10

同被引文献32

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部