期刊文献+

峰值能量比在SAR图像目标鉴别中的应用研究

The Application Research of the Peak Power Ratio of the SAR Images Discrimination
下载PDF
导出
摘要 "峰值能量比"因其物理意义清晰、计算简单而在目标识别中被广泛使用,是常用的鉴别算子之一。不过关于该算子参数设置、使用方法和失效风险等相关问题的论述并不多见。针对这些问题,笔者首先对多幅不同杂波背景及目标的实测切片样本进行计算、比较、分析。综合考虑计算效果和计算效率后,给出一些参数设置的指导性准则。继而,提出一种PPR(Peak Power Ratio)使用方法,即通过多次迭代使用PPR算子使得杂波剔除能力得以提高。笔者最后指出,PPR算子的使用具有一定局限性,并不是所有的情况都可以或需要使用,当PPR计算结果不可区分时,则表明PPR算子失效。 Peak Power Ratio( PPR) is one of the commonly used discriminator because of its clear physical meaning and simple calculation,which are widely used in target discrimination. However,there are not many expositions about the parameter setting,using method and failure risk. In response to these problems,the author firstly use several real image-slices samples with different clutter backgrounds and targets to calculate,compare,analyze. Taking into account the calculation results and computational efficiency,some guidelines for parameter setting are given. Then,a method of using Peak Power Ratio( PPR) is proposed,in which the ability of clutter rejection can be improved by using PPR operator repeatedly. Finally,the author pointed out that the use of PPR operator has some limitations,not all situations can or need to be used,when the PPR calculation results indistinguishable,it indicates that the PPR operator failure.
出处 《中国电子科学研究院学报》 北大核心 2017年第6期609-613,共5页 Journal of China Academy of Electronics and Information Technology
关键词 峰值能量比 目标鉴别 目标识别 杂波剔除 SAR图像识别 Peak Power Ratio Target Discrimination Target Recognition Clutter Elimination SARImage Recognition
  • 相关文献

参考文献1

二级参考文献7

  • 1HenriMaitre编.孙洪等译.合成孑L径雷达图像处理[M].北京:电子工业出版社,2005.
  • 2David A.E. Morgan BAE Systems, UK. Deep convolu- tional neural networks for ATR from SAR imagery [ C ]. SP1E 2015.
  • 3Yijun Sun, Zhipeng Liu, Sinisa Todorovic, and Jian Li . Synthetic: Aperture Radar automatic target recognition u- sing adaptive boosting[ C]. SPIE 2005.
  • 4Gal Mishne, Ronen Talmon, and Israel Cohen. Graph- based supervised automatic target detection [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (5) : 2278-2286.
  • 5Christopher .1. C. Burges. A tutorial on support vector machine for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998, 2(2) : 121-167.
  • 6缑水平,焦李成,张向荣.基于免疫克隆的核匹配追踪集成图像识别算法[J].模式识别与人工智能,2009,22(1):79-85. 被引量:6
  • 7王金泉,李钦富.基于SAR图像的自动目标识别系统设计与实现[J].中国电子科学研究院学报,2012,7(3):279-283. 被引量:5

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部