摘要
Understanding of the role of supramolecular chirality for tuning material optoelectronic properties has been restricted by the limited number of cases. A particular challenge is to impose supramolecular chirality onto multicolor luminescent systems that can emit in aggregation state. Here we present a self- assembly strategy from a well-selected asterisk molecule for generating supramolecular chirality with fluorescence-phosphorescence dual emission. The work takes advantages of (1) achiral chemical structure dependent peculiar self-assembly that can spontaneously undergo symmetry breaking to produce macrochirality, and (2) the assembly process can be monitored by time which due to the crystallization-driven self-assembly by self-twisting, allowing a self-progressing chiral amplification. A multicolor luminescence induced by the fluorescence-phosphorescence dual emission along with such a self-assembly behavior was also observed at a single solution system versus the time. The self-twisting chiral self-assembly fashion provides new prospects for understanding the establishment of nanochirality from achiral molecular building blocks.
Understanding of the role of supramolecular chirality for tuning material optoelectronic properties has been restricted by the limited number of cases. A particular challenge is to impose supramolecular chirality onto multicolor luminescent systems that can emit in aggregation state. Here we present a self- assembly strategy from a well-selected asterisk molecule for generating supramolecular chirality with fluorescence-phosphorescence dual emission. The work takes advantages of (1) achiral chemical structure dependent peculiar self-assembly that can spontaneously undergo symmetry breaking to produce macrochirality, and (2) the assembly process can be monitored by time which due to the crystallization-driven self-assembly by self-twisting, allowing a self-progressing chiral amplification. A multicolor luminescence induced by the fluorescence-phosphorescence dual emission along with such a self-assembly behavior was also observed at a single solution system versus the time. The self-twisting chiral self-assembly fashion provides new prospects for understanding the establishment of nanochirality from achiral molecular building blocks.
基金
supported by 2017 Natural Science Foundation of Shanghai (No. 17ZR1402400)
National Program for Thousand Young Talents of China
the Shanghai Pujiang Program (No. 15PJ1402600)
the Natural Science Foundation of Shanghai (No. 17ZR1447100)
the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning