期刊文献+

An ubiquitin-like protein SDE2 negatively affects sucrose-induced anthocyanin biosynthesis in Arabidopsis

An ubiquitin-like protein SDE2 negatively affects sucrose-induced anthocyanin biosynthesis in Arabidopsis
原文传递
导出
摘要 Anthocyanin biosynthesis is regulated by a conserved transcriptional MBW complex composed of MYB,b HLH and WD40 subunits. However, molecular mechanisms underlying transcriptional regulation of these MBW subunits remain largely elusive. In this study, we isolated an Arabidopsis mutant that displays a constitutive red color in aboveground tissues with retarded growth phenotypes. In the presence of sucrose, the mutant accumulates more than 3-fold anthocyanins of the wild type(WT), but cannot produce anthocyanins as WT in the absence of sucrose. Map-based cloning results demonstrated that the mutation occurs in the locus At4 G01000, which encodes a conserved nuclear-localized ubiquitin-like(UBL) superfamily protein, silencing defective 2(SDE2), in eukaryotes. SDE2 is ubiquitously expressed in various tissues. In the sucrose-induced anthocyanin biosynthesis, SDE2 expression was not responded to sucrose treatment at the early stage but was enhanced at the late stage. SDE2 mutations result in upregulation of anthocyanin biosynthetic and regulatory genes. Yeast-two hybrid analysis indicated that SDE2 has no direct interaction with the MYB transcription factor PAP1 and b HLH factor TT8, indicating that SDE2 is a indirect factor to affect anthocyanin accumulation. Taking together, our data suggest that SDE2 may play a role in finely coordinating anthocyanin biosynthesis with other biological processes. Anthocyanin biosynthesis is regulated by a conserved transcriptional MBW complex composed of MYB, bHLH and WD40 subunits. However, molecular mechanisms underlying transcriptional regulation of these MBW subunits remain largely elusive. In this study, we isolated an Arabidopsis mutant that displays a constitutive red color in aboveground tissues with retarded growth phenotypes. In the presence of sucrose, the mutant accumulates more than 3-fold anthocyanins of the wild type (WT), but cannot produce anthocyanins as WT in the absence of sucrose. Map-based cloning results demonstrated that the mutation occurs in the locus At4G01000, which encodes a conserved nuclear-localized ubiquitin-like (UBL) superfamily protein, silencing defective 2 (SDE2), in eukaryotes. SDE2 is ubiquitously expressed in various tissues. In the sucrose-induced anthocyanin biosynthesis, SDE2 expression was not responded to sucrose treatment at the early stage but was enhanced at the late stage. SDE2 mutations result in upregulation of anthocyanin biosynthetic and regulatory genes. Yeast-two hybrid analysis indicated that SDE2 has no direct interaction with the MYB transcription factor PAP1 and bHLH factor Trs, indicating that SDE2 is a indirect factor to affect anthocyanin accumulation. Taking together, our data suggest that SDE2 may play a role in finely coordinating anthocyanin biosynthesis with other biological processes.
出处 《Science Bulletin》 SCIE EI CAS CSCD 2017年第23期1585-1592,共8页 科学通报(英文版)
基金 supported by the National Basic Research Program of China (2013CB127000) the National Natural Science Foundation of China (31370326)
关键词 Anthocyanin biosynthesis SUCROSE SDE2 PAP1 ARABIDOPSIS Anthocyanin biosynthesis Sucrose SDE2 PAP1 Arabidopsis
  • 相关文献

参考文献3

二级参考文献62

  • 1Albert, S., Delseny, M., and Devic, M. (1997). BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J. 11,289-299.
  • 2Bernhardt, C., Lee, M.M., Gonzalez, A., Zhang, F., Lloyd, A., and Schiefelbein, J. (2003). The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development. 130, 6431-6439.
  • 3Bernhardt, C., Zhao, M., Gonzalez, A., Lloyd, A., and Schiefelbein, J. (2005). The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development. 132, 291-298.
  • 4Bogs, J., Downey, M.O., Harvey, J.S., Ashton, A.R., Tanner, G.J., and Robinson, S.R (2005). Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol. 139, 652-663.
  • 5Bogs, J., Jaffe, F.W., Takos, A.M., Walker, A.R., and Robinson, S.R (2007). The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 143, 1347-1361.
  • 6Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A., and Lamb, C. (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell. 12, 2383-2394.
  • 7Carey, C.C., Strahle, J,T., Selinger, D.A., and Chandler, V.L. (2004). Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell. 16, 450-464.
  • 8Chen, Y., Xu, H., Liu, J., Zhang, C., Leutz, A., and Mo, X. (2007). The c-Myb functions as a downstream target of PDGF-mediated survival signal in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 360, 433-436.
  • 9Clough, S.J., and Bent, A.E (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
  • 10Dare, A.R, Schaffer, R.J., Lin-Wang, K., Allan, A.C., and Hellens, R.R (2008), Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes. Plant Methods. 4,17.

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部