期刊文献+

Future extreme climate changes linked to global warming intensity 被引量:27

Future extreme climate changes linked to global warming intensity
原文传递
导出
摘要 Based on the Coupled Model Intercomparison Project Phase 5(CMIP5) daily dataset, we investigate changes of the terrestrial extreme climates given that the global mean temperature increases persistently under the Representative Concentration Pathways 8.5(RCP8.5) scenario. Compared to preindustrial conditions, more statistically significant extreme temperatures, precipitations, and dry spells are expected in the 21 st century. Cold extremes decrease and warm extremes increase in a warmer world, and cold extremes tend to be more sensitive to global warming than the warm ones. When the global mean temperature increases, cold nights, cold days, and warm nights all display nonlinear relationships with it,such as the weakening of the link projected after 3 °C global warming, while the other indices generally exhibit differently, with linear relationships. Additionally, the relative changes in the indices related to extreme precipitation show significantly consistent linear changes with the global warming magnitude.Compared with the precipitation extremes, changes in temperature extremes are more strongly related to the global mean temperature changes. For the projection of the extreme precipitation changes, models show higher uncertainty than that in extreme temperature changes, and the uncertainty for the precipitation extremes becomes more remarkable when the global warming exceeds 5 °C. Based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) daily dataset, we investigate changes of the terrestrial extreme climates given that the global mean temperature increases persistently under the Representative Concentration Pathways 8.5 (RCP8.5) scenario, Compared to preindustria/conditions, more statistically significant extreme temperatures, precipitations, and dry spells are expected in the 21st century. Cold extremes decrease and warm extremes increase in a warmer world, and cold extremes tend to be more sensitive to global warming than the warm ones. When the global mean temperature increases, cold nights, cold days, and warm nights all display nonlinear relationships with it, such as the weakening of the link projected after 3 ℃ global warming, while the other indices generally exhibit differently, with linear relationships, Additionally, the relative changes in the indices related to extreme precipitation show significantly consistent linear changes with the global warming magnitude. Compared with the precipitation extremes, changes in temperature extremes are more strongly related to the global mean temperature changes. For the projection of the extreme precipitation changes, models show higher uncertainty than that in extreme temperature changes, and the uncertainty for the precipitation extremes becomes more remarkable when the global warming exceeds 5℃.
出处 《Science Bulletin》 SCIE EI CAS CSCD 2017年第24期1673-1680,共8页 科学通报(英文版)
基金 supported by the National Key R&D Program of China (2016YFA0602401) the National Natural Science Foundation of China (41375084 and 41421004)
关键词 PROJECTION Global warming Climate extremes LINKAGE Uncertainty Projection Global warming Climate extremes Linkage Uncertainty
  • 相关文献

同被引文献257

引证文献27

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部