期刊文献+

铜离子为电子受体的MFC产电性能及废水处理 被引量:3

Electricity generating capability of microbial fuel cells with copper ions as electron acceptor and wastewater treatment
下载PDF
导出
摘要 以经过预处理的厌氧活性污泥为阳极菌种,模拟有机废水为阳极底物,人工模拟含铜废水为阴极液,构建双室MFC反应器,考察以铜离子为阴极电子受体条件下的MFC产电性能与废水处理效果。结果表明:阴极液为5 g/L的硫酸铜溶液时,最大开路电压为0.531 V,最大功率密度为49.6 mW/m^2,内阻为326Ω。通过改变阴极液浓度、电极材料等条件进一步提高其产电性能,当阴极液硫酸铜质量浓度为3 g/L、电极材料为石墨棒、导线为钛丝时,产电性能最优,最大功率密度为75.7 mW/m^2,Cu^(2+)去除率为91.9%。 Using pre-treated anaerobic activated sludge as anode strains,simulated organic wastewater as cathode substrates,and artificially simulated copper-containing wastewater as catholyte,the double-chamber microbial fuel cells(MFCs)has been constructed,and the electricity generating capability and wastewater treatment effect of MFCs under the conditions of using copper ions as cathode electrode acceptor investigated.The results show that when the catholyte is 5 g/L of copper sulfate solution,the maximum open-circuit voltage is 0.531 V,maximum power density 49.6 mW/m^2,and its internal resistance 326 Ω.Its electricity generating capability can be further improved by changing the conditions,such as catholyte concentration,electrode materials,etc.When the mass concentration of catholyte copper sulfate is 3 g/L,cathode material is graphide rod and the conductor material is titanium wire,the electricity generating capability is the best,the maximum power density is 75.7 mW/m^2,and Cu^2+ removing rate 91.9%.
出处 《工业水处理》 CSCD 北大核心 2017年第12期64-68,共5页 Industrial Water Treatment
基金 江苏省自然科学基金(BK20131133) 常州市科技计划(国际科技合作)项目(CZ20170020)
关键词 微生物燃料电池 含铜废水 产电 废水处理 microbial fuel cell copper-containing wastewater electricity generation wastewater treatment
  • 相关文献

参考文献4

二级参考文献69

  • 1国家环境保护总局.水和废水监测分析方法[M](第四版)[M].北京:中国环境科学出版社,2002..
  • 2ShenChunhua(沈春花),ZengQingling(曾庆玲),GuoYihai(郭义海).Research progress of utilization of excesssludge with microbial fuel cell technology [J]. Chemical Industry and Engineering Progress , 2011, 30 (9): 398 403.
  • 3Rinaldi A,Mecheri B.Garavaglia V,et al.Engineering materials and biology to boost performance of microbial ftiel cells:A critical review[J].Energy & Environmental Science,2008,1(4):417-429.
  • 4An J,Kim B,NamJ,et al.Comparison in performance of sediment microbial fuel cells according to depth of embedded anode[J].Bioresource Technology,2013,127:138-142.
  • 5Santoro C,Guilizzoni M,Correa Baena J P,et al.The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial ftiel cells[J].Carbon,2014,67:128-139.
  • 6CaiH,WangJ,Bu Y,et al.Treatment of carbon cloth anodes for improving power generation in a dual-chamber microbial fuel cell[J].Journal of Chemical Technology & Biotechnology,2013,88(4):623-628.
  • 7Peng L,You S J,Wang J Y.Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis[J].Biosensors and Bioelectronics,2010,25(5):1248-1251.
  • 8Zhang Y Z,Mo GQ,Li X W.A graphene modified anode to improve the performance of microbial fiiel cells[J],Power Sources,2011,196(13):5402-5407.
  • 9Xiao L,Damiena J,Luo J Y.Crumpled graphene particles for microbial fuel cell[J].Power Sources,2012,208(196):5402-5407.
  • 10Rittmann B E,Hausner M,Loffler F,et al.A vista for microbial ecology and environmental biotechnology[J].Environmental Science & Technology,2006,40(4):1096-1103.

共引文献19

同被引文献26

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部