期刊文献+

铁电极电还原溴化钠甲醇溶液反应动力学和机理

Kinetics and Mechanism toward Electrochemical Reductions of Sodium Bromide and Methanol over Iron Electrodes
下载PDF
导出
摘要 研究溴化钠(NaBr)甲醇溶液在铁电极上电还原反应动力学和机理对于二茂铁电化学制备、非水体系中二氧化碳(CO_2)的电还原和有机电合成等领域具有实用价值和科学意义,但对此未见详细报道.本文采用极化曲线和电化学阻抗谱等技术详细地研究了该体系的电还原动力学和机理.结果表明,反应物为甲醇,而Na^+只起导电作用,电极电位是该体系中唯一状态变量,其对甲醇电还原速率常数的影响符合阿仑尼乌斯唯象方程式,电还原过程不受扩散极化控制,溶液欧姆极化是主要极化形式,甲醇电还原依法拉第定律计量地产生氢气,反应活化能约为26.2 kJ·mol^(-1). It is of technological value and scientific interest to the electro-synthesis of ferrocene,conversion of carbon dioxide(CO2) and organic electro-synthesis in non-aqueous solutions by investigating the kinetics and mechanism toward electrochemical reductions of sodium bromide(NaBr) and methanol over iron electrodes.However,few reports in the related researches are available.In this article,the kinetics and mechanism toward electrochemical reductions of Na Br and methanol over iron electrodes were examined in detail by carrying out the polarization curve and electrochemical impedance spectroscopic measurements.The results showed that methanol was the reactant,while Na+ions were functioned only as conducting species;the electrode potential was the only status variable,and its impact on the rate constants of the electro-reduction of methanol followed classic Arrhenius’s equation;the reduction was not limited by concentration diffusion,but mainly by the Ohmic po larization;the amount of H2 gas production obeyed the Faraday’s law and the activation energy was evaluated to be 26.2 kJ·mol-1.
机构地区 浙江大学化学系
出处 《电化学》 CSCD 北大核心 2017年第6期645-653,共9页 Journal of Electrochemistry
关键词 甲醇 电还原 溴化钠 电化学阻抗谱 铁电极 methanol electro-reduction sodium bromide electrochemical impedance spectroscopy iron electrode
  • 相关文献

参考文献3

二级参考文献26

  • 1施晶莹,冷文华,程小芳,张鉴清,曹楚南.TiO_2光电化学电池催化氧化甲基红[J].物理化学学报,2005,21(9):971-976. 被引量:6
  • 2潘献晓,何晓英,张付宝,肖亦,蔡铎昌.双环戊二烯基铁电化学合成的影响因素[J].化学世界,2006,47(2):91-93. 被引量:2
  • 3Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev., 1995, 19:69.
  • 4Leng, W. H.; Zhang, Z.; Zhang, J. Q.; Cao, C. N. J. Phys. Chem. B, 2005, 109:15008.
  • 5Luo, J.; Hepel, M. Electrochim. Acta, 2001, 46:2913.
  • 6Hepel, M.; Hazelton, S. Electrochim. Acta, 2005, 50: 5278.
  • 7Yang, H. M.; Shi, R. R.; Zhang, K.; Hu, Y. H.; Tang, A. D.; Li, X. W. J. Alloy. Compd., 2005, 398:200.
  • 8Irie, H.; Moil, H.; Hashimoto, K. Vacuum, 2004, 74:625.
  • 9Solarska, R.; Santato, C.; Jorand-Sartoretti, C.; Ulmann, M.; Augustynski, J. J. Appl. Electrochem., 2005, 35:715.
  • 10Arai, T.; Yanagida, M.; Konishi,Y.; Iwasaki, Y.; Sugihara, H.; Savam, K. J. Phys. Chem. C, 2007, 111:7574.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部