期刊文献+

产甘油假丝酵母抗逆转录因子的过表达对酿酒酵母耐酸胁迫性的影响 被引量:4

Effect of overexpressing transcription factors of Candida glycerinogenes on acid tolerance of Saccharomyces cerevisiae
原文传递
导出
摘要 以具有优良环境耐受性的产甘油假丝酵母(Candida glycerinogenes)为研究对象,考察其抗逆转录因子对酿酒酵母(Saccharomyces cerevisiae)酸胁迫耐受性的影响.分别克隆获得C.glycerinogenes和S.cerevisiae的转录因子基因haa1和asg1,在S.cerevisiae W303-1A中分别过表达这4个基因,继而进行摇瓶试验考察重组菌株的酸耐受性.结果显示,过表达不同转录因子均能提高细胞酸耐受性,其中90 mmol/L乙酸时重组菌S.cerevisiae/Cghaa1和S.cerevisiae/Cgasg1的生物量与S.cerevisiae/Schaa1和S.cerevisiae/Scasg1相比分别提高了44.3%和18.9%.q RT-PCR发现,与Schaa1和Scasg1相比,过表达Cghaa1和Cgasg1能够显著上调下游酸耐受相关基因的表达水平.酸胁迫下乙醇发酵结果显示,相比对照组,重组菌S.cerevisiae/Cgasg1的乙醇产量提高11.1%.上述结果表明转录因子HAA1和ASG1均能提高酿酒酵母酸耐受性和酸胁迫下乙醇产量,其中Cghaa1和Cgasg1效果更为明显,结果可为提高酿酒酵母酸耐受性提供新的基因资源和思路,为进一步挖掘C.glycerinogenes抗逆基因提供借鉴. The aim of this study was to examine the effect of antiretroviral transcription factors of Candida glycerinogenes on the tolerance of Saccharomyces cerevisiae to acid stress. The haa1 and asg1 genes of C. glycerinogenes and S. cerevisiae strains were obtained by cloning, and these four genes were subsequently overexpressed in S. cerevisiae W303-1A. The acid tolerance of the recombinant strains was examined using shake flask experiments. The results showed that overexpression of different transcription factors increased the acid tolerance. In comparison with S. cerevisiae/Schaa1 and S. cerevisiae/Scasg1, the biomass of S. cerevisiae/Cghaa1 and S. cerevisiae/Cgasg1 in 90 mmol/L acetic acid was 44.3% and 18.9% higher, respectively. Strains overexpressing Cgasg1 and Cghaa1 exhibited enhanced tolerance to a high concentration of acetic acid. qRT-PCR analysis revealed that overexpression of Cghaa1 and Cgasg1 significantly up-regulated the expression of downstream acid-tolerance-related genes. Under conditions of acid stress, the ethanol yield of S. cerevisiae/Cgasg1 was 11.1% higher than that of the control group. These results indicate that the transcription factors HAA1 and ASG1 can enhance the tolerance of S. cerevisiae to acid stress. This study provides a valuable insight into techniques for improving the acid tolerance of S. cerevisiae and for future research into C. glycerinogenes resistance genes.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2017年第6期1006-1010,共5页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(31570052,31601456) 江苏省自然科学基金项目(BK20140138) 111项目(111-2-06)资助~~
关键词 产甘油假丝酵母 转录因子 过表达 酸耐受性 乙醇产量 Candida glycerinogenes transcription factor overexpression acid tolerance ethanol yield
  • 相关文献

参考文献2

二级参考文献46

  • 1林贝,赵心清,葛旭萌,白凤武.玉米秸秆酸解副产物对重组酿酒酵母6508-127发酵的影响[J].中国生物工程杂志,2007,27(7):61-67. 被引量:33
  • 2Zhao XQ, Bai FW. Mechanisms of yeast ethanol tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol, 2009, 144(1): 23-30.
  • 3Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv, 2012, 30(6): 1207-1218.
  • 4Mills TY, Sandoval NR, Gill RT. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels, 2009, 2(26): 1-11.
  • 5Bajwa PK, Ho CY, Chan CK, et al. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie van Leeu, 2013, 103: 1281-1295.
  • 6Mollapour M, Piper PW. Hogl mitogen-activated protein kinase phosphorylation targets the yeast Fpsl aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol, 2007, 27(18): 6446-6456.
  • 7Paiva S, Devaux F, Barbosa S, et al. Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast, 2004, 21(3): 201-210.
  • 8Pacheco A, Talaia G, Sci Pessoa J, et al. Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jenl and Ady2. FEMS Yeast Res, 2012, 12(3): 375-381.
  • 9Casey E, Sedlak M, Ho WN, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res, 2010, 10: 385-393.
  • 10Mira NP, Palma M, Guerreiro JF, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact, 2010, 9: 79.

共引文献21

同被引文献17

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部