期刊文献+

数学形态学和多尺度分析的路面裂缝提取 被引量:4

Mathematical Morphology and Multi-scale Analysis for Pavement Crack Detection
原文传递
导出
摘要 针对路面图像对比度低、背景纹理复杂、噪声多的特点,首先通过设计一种频域滤波器进行滤波,去除部分噪声,增强裂缝图像和抑制背景的干扰;其次基于多尺度分析的优点,选取不同尺寸的结构元素进行形态学运算,进一步去除噪声及伪裂缝;最后进行Beamlet变换,对不同尺寸、不同位置和方向的裂缝目标进行精确逼近,重构裂缝图像从而提取目标。试验结果证明了该方法的有效性,取得了比较好的效果。 In view of the characteristics of the low contrast of the image on the road surface, complicated texture of background and much noise, firstly, a frequency domain filter is designed for filtering to remove part of the noise and enhance crack image and restrain the interference of background; secondly based on the advantages of multi-scale analysis, different sizes of structural elements are chosen for morphological calculations to further remove noise and pseudo crack; finally Beamlet transform is conducted to try precisely as much as possible extract the cracks with different sizes, different positions and different directions, and re-construct crack image to extract target detection. The experimental results prove that the proposed method is effective and has achieved good effect.
出处 《公路》 北大核心 2018年第1期31-34,共4页 Highway
基金 江西省教育厅科技资助项目,项目编号GJJ13373 国家自然科学基金,项目编号61463020
关键词 路面裂缝 检测识别 形态学 多尺度分析 提取 mathematical morphology multi-scale analysis crack extraction
  • 相关文献

参考文献7

二级参考文献102

共引文献144

同被引文献25

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部