期刊文献+

俯仰向DBF SAR系统通道相位偏差估计算法 被引量:1

Channel phase bias estimation algorithm for the DBF SAR system in elevation
下载PDF
导出
摘要 由于俯仰向多通道合成孔径雷达系统通道之间存在相位偏差,因此降低了数字波束形成后雷达图像的性能.为解决上述问题,提出了一种俯仰向通道相位偏差估计算法.该算法首先对相邻通道间的数据进行干涉处理,获得相邻通道之间的复干涉相位图;然后,对复干涉相位进行干涉处理,获得邻近通道干涉相位的差分相位;最后,通过优化图像的最大对比度估计俯仰向通道间的相位偏差.利用车载俯仰向多通道雷达系统获取的数据验证了这种算法的有效性. Due to the presence of phase bias between channels in elevation of the multichannel Synthetic Aperture Radar (SAR) system, the quality of the (DBF). In order to solve the problem, this paper multichannel SAR system in elevation. First, the SAR images decreases after Digital Beam-Forming presents a phase bias estimation algorithm for the complex interferograms are obtained by conjugate multiplication of the focused SAR images acquired by the adjacent channels. Then, the differential interferograms are obtained by conjugate multiplication of the adjacent interferograms. Finally, the phase bias between each channel and the reference one are estimated by the maximum sharpness optimization. The proposed algorithm is validated through experimental data acquired by the automobile based multichannel SAR system.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2018年第1期145-149,167,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61471276 41371439 61601298)
关键词 合成孔径雷达 数字波束形成 通道相位偏差 最大对比度 synthetic aperture radar digital beam-forming channel phase bias maximum sharpness
  • 相关文献

参考文献4

二级参考文献20

  • 1矫伟,梁兴东,丁赤飚.基于内定标信号的合成孔径雷达系统幅相误差的提取和校正[J].电子与信息学报,2005,27(12):1883-1886. 被引量:14
  • 2Freeman A, Johnson W T K, Huneycutt B, et al.. The "myth" of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320-324.
  • 3Goodman N, Rajakrishna D, and Stiles J. Wide swath, high resolution SAR using multiple receive aperture[C]. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 1767-1769.
  • 4Gebert N, Kreiger G, and Moreira A. Digital beamforming on recieve: techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564-592.
  • 5Li Z, Wang H, Su T, et al.. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82-86.
  • 6Li Z, Bao Z, Wang H, et al.. Performance impovement for constellation SAR using signal processing techiques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 436-452.
  • 7Laskowski P, Bordoni F, and Younis M. Antenna pattern compensation in multi-channel azimuth reconstruction algorithmiC]. Proceeding of the Advanced RF Sensors and Remote Sensing Instruments, The Netherlands, 2011: 1-10.
  • 8Soumekh M and Himed B. SAR-MTI processing of multi-channel airborne radar measurement (MCARM) data [C]. Proceedings of the 2002 IEEE Radar Conference, Long Beach. CA. 2002: 24-28.
  • 9Zhang L, Xing M, Qiu C, et al.. Adaptive two-step calibration for high-resolution and wide-swath SAR imaging[J]. IET Radar, Sonar and Navigation, 2010, 4(4): 548-559.
  • 10Liu A, Liao G, Ma L, et al.. An array error estimation method for constellation SAR systems[J]. IEEE Geoscienee and Remote Sensing Letters, 2010, 7(4): 731-751.

共引文献39

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部