期刊文献+

救援探测机器人越障能力研究 被引量:4

Study on Capability of Obstacle Surmounting for Rescue Detecting Robot
下载PDF
导出
摘要 为适应煤矿井下复杂环境,实现机器人自主操作与控制,提出"场景集-动作规划集-电机控制集"的控制策略,以保证其具有较好的稳定性能和最佳的越障性能。对机器人摆臂姿态的变化分析,得到机器人有22种空间姿态变化组合形式;利用重心投影法制定了机器人机身最小失稳角度及最小失稳时间参数,以判定机器人的稳定性;根据机器人不同姿态变化情况表制定了控制策略,完成了越障实验,验证了机器人控制策略的正确性及可行性。 In order to adapt to the complex environment in coal mine and realize autonomous operation and control, control strategies named scene-sets(SS), action-planning-sets(APS) and motor-control-sets (MCS) were proposed. It could guarantee robot have capacity of good stability and better obstacle surmounting. From analyzing the attitude change of space of robot's swing arms, the robot's obstacle surmounting movements has 22 combination forms in its attitude change of space. Robot's stability was studied by the way of gravity-projection method, and the minimum unstable angle and minimum unstable time can be used to determine whether robot is stable. The control strategy was made according to the table of the attitude change of the robot, and robot elimed the step. The control strategy was verified correctness and feasibility in the test.
出处 《煤炭技术》 CAS 2018年第1期230-231,共2页 Coal Technology
基金 陕西省教育厅项目(17JK0506) 陕西省科技统筹创新工程计划项目(2013KTCL01-02) 西安科技大学培育基金项目(2014026)
关键词 机器人 履带 越障 稳定性 重心 控制策略 robot track obstacle surmounting stability center of gravity control strategy
  • 相关文献

参考文献3

二级参考文献25

  • 1iRobot Corporation. Small Unmanned Ground Vehicle (SUGV) [EB/OL]. (2008-05-12) [2009-03-18]. http://www.irobot.com/ sp.cfm?pageid=219.
  • 2Chiba Institute of Technology. Hibiscus, The New Rescue Robot[EB/OL]. (2006-06-05) [2009-03-18]. http://www. techfresh.net/hibiscus-the-new-rescue-robot.
  • 3Chen C X, Trivedi M M. Reactive locomotion control of articulated-tracked mobile robots for obstacle negotiation[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 1993: 1349-1356.
  • 4Choi B S, Song S M. Fully automated obstacle-crossing gaits for walking machines[J]. IEEE Transactions on Systems, Man and Cybernetics, 1998, 18(6): 952-964.
  • 5Liu J G, Wang Y C, Ma S G, et al. Analysis of stairs-climbing ability for a tracked reconfigurable modular robot[C]//IEEE International Workshop on Safety, Security and Rescue Robotics. Piscataway, NJ, USA: IEEE, 2005: 36-41.
  • 6Yamauchi B M. PackBot: A versatile platform for military robotics[C]//Proceedings of the SPIE, vol.5422. Bellingham, USA: SPIE, 2004: 228-237.
  • 7Iwamoto T, Yamamoto H. Mechanical design of variable config- uration tracked vehicle[J]. Journal of Mechanical Design, 1990, 112(3): 289-295.
  • 8Paillat J L, Lucidarme P, Hardouin L. Variable geometry tracked vehicle (VGTV) prototype: Conception, capability and problems[C\OL]. [2015-05-25]. http://conferences, telecom- bretagne, eu/data.
  • 9Kim J H, Lee C G. Variable transformation shapes of single- tracked mechanism for a rescue robot[C]//International Confer- ence on Control, Automation and Systems. Piscataway, USA: IEEE, 2007: 1057-1061.
  • 10Liu J G, Wang Y C, Ma S G, et al. Analysis of stairs-climbing ability for a tracked reconfigurable modular robot[C]//IEEE In- ternational Workshop on Safety, Security and Rescue Robots. Piscataway, USA: IEEE, 2005: 36-41.

共引文献118

同被引文献42

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部