期刊文献+

基于MFOA-SVM算法的乳腺肿瘤识别 被引量:1

Breast Cancer Recognition Based on MFOA-SVM Method
下载PDF
导出
摘要 针对乳腺肿瘤良恶性二值分类的特点,提出了一种基于修正的果蝇优化算法和支持向量机(MFOASVM)的乳腺肿瘤识别方法.为提高SVM分类器的泛化性能,将MFOA算法引入SVM,进而优化SVM中的惩罚参数和核函数参数.为了综合评估提出算法的有效性,在威斯康新诊断乳腺癌(Wisconsin diagnostic breast cancer,WDBC)数据集进行了实验对比分析.实验结果表明:MFOA-SVM与BP,LVQ及PSO-SVM 3种方法相比,其分类准确性和稳定性显著提高. For the two value classification characteristics of benign and malignant breast tumors,a breast tumor recognition method MFOA-SVM was proposed based on modified fruit-fly optimization algorithm and support vector machine. The MFOA was introduced into SVM to improve the generalization performance of the SVM classifer,and then the penalty parameters and kernel function parameters in SVM were optimized. In order to comprehensively evaluate the effectiveness of the proposed algorithm,the experiment and analysis were done on the Wisconsin breast cancer dataset. The experimental results showed that the classification accuracy and stability of MFQA-SVM were improved significantly compared with BP,LVQ and PSO-SVM three methods.
出处 《鲁东大学学报(自然科学版)》 2018年第1期20-24,共5页 Journal of Ludong University:Natural Science Edition
基金 国家自然科学基金(61170161) 山东省自然科学基金(ZR2016FB18)
关键词 果蝇优化算法 支持向量机 参数优化 乳腺肿瘤识别 modified fruit-fly optimization algorithm support vector machine parameters optimization breast cancer recognition
  • 相关文献

参考文献6

二级参考文献69

  • 1俞一彪,王朔中.基于互信息匹配模型的说话人识别[J].声学学报,2004,29(5):462-466. 被引量:8
  • 2王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 3张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 4程剑锋,徐俊艳.学习矢量量化的推广及其典型形式的比较[J].计算机工程与应用,2006,42(17):82-85. 被引量:5
  • 5Gunn R. Support vector machines for classification and regression. Technical Report of University of Southamption,1998.
  • 6Lin Tienlin, Lin Chihjen. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, http ://www. csie. ntu. edu. tw/-cjlin/. 2003.
  • 7Chang Chihchung , Lin Chihjen. LIBSVM: a library for support vector machines. Last updated: February, http://www, csie. ntu. edu. tw/- ejlin/libsvm. 2009.
  • 8Hsu Chihwei, Chang Chihehung, Lin Chihjen. A practical guide to support vector classieation, http://www, esie. ntu. edu. tw/- cjlin/papors/guide/guide, pdf. 2001.
  • 9Hart,P E,Nilsson,N J and Raphael,B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cy- bernetics SSC4,1968(2) : 100-107.
  • 10Friedman, M. A mathematical programming model for optimal scheduling for buses depature under determin- istic condition [J]. Transportation Research, 1976, 10 (2) :83-90.

共引文献342

同被引文献8

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部